
The Rational Zero Theorem  
The Rational Zero Theorem gives a list of possible rational zeros of a 

polynomial function. Equivalently, the theorem gives all possible rational roots 

of a polynomial equation. Not every number in the list will be a zero of the 

function, but every rational zero of the polynomial function will appear 

somewhere in the list.  

The Rational Zero Theorem 

If  f (x) = anx
n + an-1x

n-1 +…+ a1x + a0 has integer coefficients and  

(where      is reduced) is a rational zero, then p is a factor of the constant 

term a0 and q is a factor of the leading coefficient an.  
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EXAMPLE: Using the Rational Zero Theorem 

List all possible rational zeros of  f (x) = 15x3 + 14x2 - 3x – 2. 

Solution     The constant term is –2 and the leading coefficient is 15.  

1 2 1 2 1 2
5 53 3 15 15

Factors of the constant term, 2
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Factors of the leading coefficient, 15
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There are 16 possible rational zeros. The actual solution set to  f (x) = 15x3 + 

14x2 - 3x – 2 = 0 is {-1, -1/3, 2/5}, which contains 3 of the 16 possible solutions. 



EXAMPLE:    Solving a Polynomial Equation 

Solve:      x4 - 6x2 - 8x + 24 = 0. 

Solution     Because we are given an equation, we will use the word "roots," 

rather than "zeros," in the solution process. We begin by listing all possible 

rational roots. 
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Possible rational zeros

Factors of the leading coefficient, 1
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EXAMPLE:    Solving a Polynomial Equation 

Solve:      x4 - 6x2 - 8x + 24 = 0. 

Solution     The graph of f (x) = x4 - 6x2 - 8x + 24 is shown the figure below. 

Because the x-intercept is 2, we will test 2 by synthetic division and show that 

it is a root of the given equation.  

x-intercept: 2 

The zero remainder 

indicates that 2 is a root 

of  x4 - 6x2 - 8x + 24 = 0. 

2 1 0    -6    -8     24 

       2      4    -4  -24 

1     2    -2   -12 0 



EXAMPLE:    Solving a Polynomial Equation 

Solve:      x4 - 6x2 - 8x + 24 = 0. 

Solution     Now we can rewrite the given equation in factored form.  

                   (x – 2)(x3 + 2x2 - 2x - 12) = 0  This is the result obtained from the 

 synthetic division. 

     x – 2 = 0     or     x3 + 2x2 - 2x - 12 = 0      Set each factor equal to zero.  

                                x4 - 6x2 + 8x + 24 = 0      This is the given equation. 

Now we must continue by factoring x3 + 2x2 - 2x - 12 = 0  



EXAMPLE:    Solving a Polynomial Equation 

Solve:      x4 - 6x2 - 8x + 24 = 0. 

Solution Because the graph turns around at 2, this means that 2 is a root of 

even multiplicity. Thus, 2 must also be a root of x3 + 2x2 - 2x - 12 = 0. 

x-intercept: 2 

2 1     2    -2   -12 

              2      8      12 

       1     4      6       0 

These are the coefficients 

of x3 + 2x2 - 2x - 12 = 0. 

The zero remainder 
indicates that 2 is a root of 
x3 + 2x2 - 2x - 12 = 0. 



EXAMPLE:    Solving a Polynomial Equation 

Solve:      x4 - 6x2 - 8x + 24 = 0. 

Solution     Now we can solve the original equation as follows.  

                   (x – 2)(x3 + 2x2 - 2x - 12) = 0  This was obtained from the first 

 synthetic division. 

                                x4 - 6x2 + 8x + 24 = 0      This is the given equation. 

                   (x – 2)(x – 2)(x2 + 4x + 6) = 0  This was obtained from the second 

 synthetic division. 

 x – 2 = 0    or    x – 2 = 0    or    x2 + 4x + 6 = 0      Set each factor equal to zero.  

       x = 2                 x = 2            x2 + 4x + 6 = 0      Solve.  



EXAMPLE:    Solving a Polynomial Equation 

Solve:      x4 - 6x2 - 8x + 24 = 0. 

Solution     We can use the quadratic formula to solve x2 + 4x + 6 = 0. 

Let a = 1, b = 4, and c = 6.  
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We use the quadratic formula because x2 + 4x + 6 = 0 

cannot be factored.  
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Simplify. 2 2i= - 

Multiply and subtract under the radical.  4 8

2

-  -
=

4 2 2

2

i- 
= - = - =8 4(2)( 1) 2 2i

The solution set of the original equation is {2, -2 - i       -2 + i     }. 2,i 2i



1.    If a polynomial equation is of degree n, then counting multiple roots 

separately, the equation has n roots. 

2.    If a + bi is a root of a polynomial equation (b  0), then the non-real 

complex number a - bi is also a root. Non-real complex roots, if 

they exist, occur in conjugate pairs.  

Properties of Polynomial Equations 




