Unit Circle, reference angles, 45 + 45 + 90 triangle \& 30 + 60 + 90 triangle

270°

Finding Reference Angles in Degrees

Quadrant	Measure of Angle Theta	Measure of Reference Angle
I	0° to 90°	theta
III	90° to 180°	180° - theta
III	180° to 270°	theta -180°
IV	270° to 360°	$360^{\circ}-$ theta

	$\begin{aligned} \mathrm{X}^{2}+\mathrm{Y}^{2} & =\mathrm{r}^{2} \\ 1^{2}+1^{2} & =\mathrm{r}^{2} \\ 2 & =\mathrm{r}^{2} \\ \sqrt{2} & =\sqrt{\mathrm{r}^{2}} \\ \sqrt{2} & =\mathrm{r} \end{aligned}$
	Rationalize the Denominator You cannot have a radical in the denominator.

x	$\sin (x)$	$\cos (x)$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0
$\frac{2 \pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
$\frac{3 \pi}{4}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$
$\frac{5 \pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$

x	$\sin (x)$	$\cos (x)$
π	0	-1
$\frac{7 \pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$
$\frac{5 \pi}{4}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$
$\frac{4 \pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
$\frac{3 \pi}{2}$	-1	0
$\frac{5 \pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{7 \pi}{4}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$\frac{11 \pi}{6}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$

Figure 1: Selected Values of Sine and Cosine

Practice

(01)

If $\tan =3 / 4$ and $\sec <0$, in which quadrant does angle lie?
What are the values of the remaining angles?
(02)

The value of $\cos (-\pi / 3)$ is

A	B	C	D
$1 / 2$	$-1 / 2$	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$

(03)

Assume $\cos =3 / 5$, and $3 \pi / 2<$ Degree $<2 \pi$. Find the remaining trig values.

(04)

Find the exact value of the five remaining trig functions if $\tan =-4 / 3$ and $\cos <0$

(05)

If $\tan =$ and $\sec <0$, in which quadrant does angle lie?
What are the values of the remaining angles?
(06)

If $\sin \theta=\frac{1}{3}$ and θ is in quadrant II, find all other trigonometric functions of θ. (07)

Find the exact values of each of the remaining trigonometric functions of θ when $\tan \theta=-\frac{1}{8}$ and $\sec \theta<0$.
(08)

Name the quadrant in which the angle θ lies when $\cos \theta<0$ and $\tan \theta<0$.

