$2 y^{2}-2 y+1$ a. Monomial, binomial, or trinomial? Trinomial b. Degree: 2 c. Coefficient: \qquad	$5 x+4+x^{3}$ a. Monomial, binomial, or trinomial? Trinomial b. Degree: 3 c. Coefficient: \qquad
-5 a. Monomial, binomial, or trinomial? Monomial b. Degree: \qquad c. Coefficient: -5	$(3 y-2)+(4 y+7)=7 y+5$ $20 x^{2}-5 x y-4 x y+y^{2}=\underline{20 x^{2}-9 x y+y^{2}}$

Monomial, binomial, trinomial, polynomial [TE4-B]
a. Is the polynomial -26 a trinomial, binomial, or monomial? Monomial
b. The degree of this polynomial is: \qquad

Algebraic Expressions

Adding [Te4-B]

$\left(6 b^{2}+4 b+5\right)+\left(6 b^{2}+b+3\right)=$	$\left(3 w^{2}-w+5\right)+\left(9 w^{2}-w+7\right)=$
$12 b^{2}+5 b+8$	
$\underline{12 w^{2}-2 w+12}$	
$\left(4 k^{3}+3 k^{2}+6 k\right)+\left(2 k^{2}+5 k+6\right)=$	$\left(\frac{1}{9} r^{4}-\frac{5}{7} r^{3}-\frac{1}{6}\right)+\left(\frac{26}{9} r^{4}-\frac{9}{7} r^{3}+\frac{7}{6}\right)=$
$\underline{4 k^{3}+5 k^{2}+11 k+6}$	$\underline{3 r^{4}-2 r^{3}+1}$
Add $75 y^{2}+75 y-75$ to $25 y^{2}+75 y+100$. $100 y^{2}+150 y+25$	Add $2 y^{2}+5 y-3$ to $-8 y^{2}+3 y-9$. $-6 y^{2}+8 y-12$

$\begin{aligned} & x^{2}-7 x-8 x+56= \\ & x^{2}-15 x+56 \end{aligned}$	$\begin{aligned} & 63 a^{2}-9 a+14 a-2= \\ & 63 a^{2}+5 a-2 \end{aligned}$
$\begin{aligned} & u^{2}+2 u-2 u-4= \\ & \underline{u^{2}-4} \end{aligned}$	$\begin{aligned} & p^{2}-p+2 p-2= \\ & p^{2}+p-2 \end{aligned}$
$\begin{aligned} & \left(6 s^{3}-7 s-1\right)-\left(-6 s^{3}+7 s+1\right)= \\ & 12 s^{3}-14 s-2 \end{aligned}$	$\begin{aligned} & \left(2 u^{2}-u-3\right)-\left(-4 u^{2}+5 u+1\right)= \\ & 6 u^{2}-6 u-4 \end{aligned}$
$\begin{aligned} & \left(\frac{8}{9} k^{3}-\frac{3}{4} k^{2}-2 k+1\right)-\left(\frac{7}{3} k^{3}-1 k^{2}+\frac{1}{5} k-\frac{1}{3}\right)= \\ & -\frac{13}{9} k^{3}+\frac{1}{4} k^{2}-\frac{11}{5} k+\frac{4}{3} \end{aligned}$	Subtract $4 y^{2}+10 y+3$ from $5 y^{2}-10 y-2$. $y^{2}-20 y-5$
Subtract $2 x+5$ from the sum of $6 x+4$ and $7 x+3$. $\underline{11 x+2}$	

Multiplying [TE-5\} \& FOIL

Multiply the following by applying the distributive property.	$3 x(6 x-4) \underline{18 x^{2}-12 x}$
$8 a b\left(a^{2}-a b+1\right)$	$3 x^{2} y\left(5 x^{3} y-3 x^{2} y^{2}+2 y^{3}\right)$
$\underline{8 a^{3} b-8 a^{2} b^{2}+8 a b}$	$\underline{15 x^{5} y^{2}-9 x^{4} y^{3}+6 x^{2} y^{4}}$

$\begin{aligned} & 5 x y^{3}\left(3 x^{2}+5 x y+4 y^{2}\right) \\ & 15 x^{3} y^{3}+25 x^{2} y^{4}+20 x y^{5} \end{aligned}$	$(a+7)(a+2) a^{2}+9 a+14$ $\left(a-\frac{4}{5}\right)\left(a+\frac{4}{5}\right) a^{2}-\frac{16}{25}$
$(x-2)(x+3) \underline{x^{2}+x-6}$	$(3 b-5)(b-4) \underline{3 b^{2}-17 b+20}$
$(2 y+5)(7 y-6) 14 y^{2}+23 y-30$	$(6 a+2)(b+5) 6 a b+30 a+2 b+10$
$(7 b-3)(7 b+3) \underline{49 b^{2}-9}$	$(4 x+3)(2 x+9) \underline{8 x^{2}+42 x+27}$
$(b-5)\left(b^{2}-3 b+4\right) \underline{b^{3}-8 b^{2}+19 b-20}$	$(x+6)\left(x^{2}-4 x+2\right) \underline{x}^{3}+2 x^{2}-22 x+12$
$\begin{aligned} & \left(6 y^{2}+4 y+1\right)\left(y^{2}-5 y+3\right) \\ & 6 y^{4}-26 y^{3}-y^{2}+7 y+3 \end{aligned}$	$(a+6)(a+3)(a+2) a^{3}+11 a^{2}+36 a+36$

Simplifying Algebraic Expressions [TE-5]
$(6 b-5)(3 b+4)-218 b^{2}+9 b-22$

$$
4 a(a-1)-3 a(a-2) a^{2}+2 a
$$

$(y+5)(y-3)+(-2)(4) y^{2}+2 y-23$
$5 b(b-1)-3 b(b-4) \underline{2 b^{2}+7 b}$

Exponents \& Poly \& Special Products [TE-6]

$(x+13)^{2} \underline{x^{2}+26 x+169}$	$(a-7)^{2} \underline{a^{2}-14 a+49}$

$\left(a-\frac{5}{2}\right)^{2} a^{2}-5 a+\frac{25}{4}$	$(x-13)^{2} \underline{x^{2}-26 x+169}$
$(6 x-1)^{2} \underline{36 x^{2}-12 x+1}$	$(5 a+3)^{2} \underline{25 a^{2}+30 a+9}$
$(6 a-5)^{2} \underline{36 a^{2}-60 a+25}$	$(6 x+1)^{2} \underline{36 x^{2}+12 x+1}$

Dividing [Te7-B]

Divide $27 x^{2}-21 x$ by $3 x . \underline{9 x-7}$	Divide $8 x-18 x^{3}$ by $2 x . \underline{4-9 x^{2}}$
Divide $9 x^{2} y-72 x y$ by $9 x . \underline{x y-8 y}$	Divide $30 x^{5}-48 x^{3}+12 x$ by $6 x$. $\underline{5 x^{4}-8 x^{2}+2}$
Divide $45 a^{2}-54 a$ by $-9 a . \underline{-5 a+6}$	Divide $6 a^{5}+8 a^{4}$ by $-2 a . \underline{-3 a^{4}-4 a^{3}}$
Divide $8 a^{3} b-40 a^{2} b^{2}+32 a b^{3}$ by $-8 a$. $\frac{-a^{2} b+5 a b^{2}-4 b^{3}}{}$	Find the quotient $\frac{24 x+27 y}{3}=\underline{8 x+9 y}$
$\frac{12 x-32 y}{4}=\underline{3 x-8 y}$	$\frac{30 x y^{2}-18 x}{-6 x}=\underline{-5 y^{2}+3}$

Greatest Common Factor [TE3-A]

$$
7 a^{3}-5 a^{2}=a^{2}(7 a-5)
$$

$25 a b^{2} c^{3}+15 a^{3} c^{3}-25 a c^{2}=$ $5 a c^{2}\left(5 b^{2} c+3 a^{2} c-5\right)$

$42 x^{2} y-7 x y^{2}=\underline{7 x y \cdot(6 x-y)}$	$8 a^{2}(a+b)^{2}+10 b^{2}(a+b)^{2}=$ $2(a+b)^{2}\left(4 a^{2}+5 b^{2}\right)$		
$9 b^{3}+18 b^{2}+21 b=\underline{3 b \cdot\left(3 b^{2}+6 b+7\right)}$	$5 x^{2}(x-5)-6 x(x-5)+3(x-5)=$ $(x-5)\left(5 x^{2}-6 x+3\right)$		
$-60 x^{3} y^{2}+108 x^{2} y^{3}+132 x^{3} y^{3}=$			
$12 x^{2} y^{2}(-5 x+9 y+11 x y)$		\quad	$4 x(a-b)+3 y(a-b)=$
:---			
$(a-b)(4 x+3 y)$			

Find the value of y [TE4-B]

Find the value of $x^{2}-4 x+4$ when $x=-3 . \underline{25}$

Find the value of $x^{2}+2 x+1$
when $x=1 . \underline{4}$

Solving for zero

Solving equations using the Special zero factor property to set the factors to " 0 " and solve $\{T F 8-A\}$
1
$y^{2}+11 y+24=0, y=-3,-8$

2
$100 x^{2}+500 x-1400=0, x=\underline{2,-7}$

$$
r^{2}=-4 r+5, r=1,-5
$$

$$
4
$$

$$
a^{2}-4=0, a=-2,2
$$

