

Figure $45 y=\sin x,-\infty<x<\infty$

Properties of the Sine Function $y=\boldsymbol{\operatorname { s i n }} x$

1. The domain is the set of all real numbers.
2. The range consists of all real numbers from -1 to 1 , inclusive.
3. The sine function is an odd function, as the symmetry of the graph with respect to the origin indicates.
4. The sine function is periodic, with period 2π.
5. The x-intercepts are $\ldots,-2 \pi,-\pi, 0, \pi, 2 \pi, 3 \pi, \ldots$; the y-intercept is 0 .
6. The maximum value is 1 and occurs at $x=\ldots,-\frac{3 \pi}{2}, \frac{\pi}{2}, \frac{5 \pi}{2}, \frac{9 \pi}{2}, \ldots$; the minimum value is -1 and occurs at $x=\ldots,-\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{7 \pi}{2}, \frac{11 \pi}{2}, \ldots$.

Properties of the Cosine Function

1. The domain is the set of all real numbers.
2. The range consists of all real numbers from -1 to 1 , inclusive.
3. The cosine function is an even function, as the symmetry of the graph with respect to the y-axis indicates.
4. The cosine function is periodic, with period 2π.
5. The x-intercepts are $\ldots,-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots$; the y-intercept is 1 .
6. The maximum value is 1 and occurs at $x=\ldots,-2 \pi, 0,2 \pi, 4 \pi, 6 \pi, \ldots$; the minimum value is -1 and occurs at $x=\ldots,-\pi, \pi, 3 \pi, 5 \pi, \ldots$

Amplitude and Period and Cycle

Sin

Figure 61
The graph is sinusoidal, with amplitude $|A|=2$. The period is 4 , so $\frac{2 \pi}{\omega}=4$, or $\omega=\frac{\pi}{2}$. Since the graph passes through the origin, it is easier to view the equation as a sine function, ${ }^{\dagger}$ but note that the graph is actually the reflection of a sine function about the x-axis (since the graph is decreasing near the origin). This requires that $A=-2$. The sine function whose graph is given in Figure 61 is

$$
y=A \sin (\omega x)=-2 \sin \left(\frac{\pi}{2} x\right)
$$

T=4 then $4 / 1=2 \mathrm{pi} / \mathrm{w}$ then cross multiply and solve for w . Answer us pi /2

The graph has the characteristics of a cosine function. Do you see why? The maximum value, 3 , occurs at $x=0$. So we view the equation as a cosine function $y=A \cos (\omega x)$ with $A=3$ and period $T=1$. Then $\frac{2 \pi}{\omega}=1$, so $\omega=2 \pi$. The cosine function whose graph is given in Figure 60 is

$$
y=A \cos (\omega x)=3 \cos (2 \pi x)
$$

$\mathrm{T}=1$ then $1 / 1=2 \mathrm{pi} / \mathrm{w}$ then cross multiply and solve for w . Answer us 2 pi
THEORFM
If $\omega>0$, the amplitude and period of $y=A \sin (\omega x)$ and $y=A \cos (\omega x)$ are given by

$$
\begin{equation*}
\text { Amplitude }=|A| \quad \text { Period }=T=\frac{2 \pi}{\omega} \tag{1}
\end{equation*}
$$

Determine the amplitude and period of $y=3 \sin (4 x)$.
Comparing $y=3 \sin (4 x)$ to $y=A \sin (\omega x)$, we find that $A=3$ and $\omega=4$. From equation (1),

$$
\text { Amplitude }=|A|=3 \quad \text { Period }=T=\frac{2 \pi}{\omega}=\frac{2 \pi}{4}=\frac{\pi}{2}
$$

If $\omega>0 \quad y=A \cos (\omega x) \quad$ Amplitude $=|A| \quad$ Period $=T=\frac{2 \pi}{\omega}$
$Y=6 \sin (\pi x)$

Amplitude is 6 and Period = 2

Determine the amplitude and the period of the function without graphing.
(a) $y=-5 \cos (6 x)$
(b) $y=3 \sin (\pi x)$
(c) $y=\frac{1}{3} \sin (2 x)$
(d) $y=\cos \left(\frac{x}{\pi}\right)$

Which function matches the graph shown in the following graph ?
(a) $y=\cos x$
(b) $y=\cos 2 x$
(c) $y=\sin 2 x$
(d) $y=\sin x$

