- 1	٠.	b		-	-
	a	U	•	e	C

х	$y = \sin x$	(x, y)
0	0	(0,0)
$\frac{\pi}{6}$	1/2	$\left(\frac{\pi}{6},\frac{1}{2}\right)$
$\frac{\pi}{2}$	1	$\left(\frac{\pi}{2},1\right)$
$\frac{5\pi}{6}$	$\frac{1}{2}$	$\left(\frac{5\pi}{6},\frac{1}{2}\right)$
π	0	$(\pi, 0)$
$\frac{7\pi}{6}$	$-\frac{1}{2}$	$\left(\frac{7\pi}{6}, -\frac{1}{2}\right)$
$\frac{3\pi}{2}$	-1	$\left(\frac{3\pi}{2},-1\right)$
$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\left(\frac{11\pi}{6}, -\frac{1}{2}\right)$
2π	0	$(2\pi, 0)$

Figure 44 $y = \sin x$, $0 \le x \le 2\pi$

Figure 45 $y = \sin x, -\infty < x < \infty$

Properties of the Sine Function $y = \sin x$

- 1. The domain is the set of all real numbers.
- 2. The range consists of all real numbers from -1 to 1, inclusive.
- **3.** The sine function is an odd function, as the symmetry of the graph with respect to the origin indicates.
- **4.** The sine function is periodic, with period 2π .
- 5. The x-intercepts are ..., -2π , $-\pi$, 0, π , 2π , 3π ,...; the y-intercept is 0.
- 6. The maximum value is 1 and occurs at $x = \dots, -\frac{3\pi}{2}, \frac{\pi}{2}, \frac{5\pi}{2}, \frac{9\pi}{2}, \dots;$ the minimum value is -1 and occurs at $x = \dots, -\frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{2}, \frac{11\pi}{2}, \dots$

400 CHAPTER 6 Trigonometric Function

Т	a	b	ı	e	7

х	$y = \cos x$	(x, y)	
0	1	(0, 1)	
$\frac{\pi}{3}$	$\frac{1}{2}$	$\left(\frac{\pi}{3},\frac{1}{2}\right)$	
$\frac{\pi}{2}$	0	$\left(\frac{\pi}{2},0\right)$	
$\frac{2\pi}{3}$	$-\frac{1}{2}$	$\left(\frac{2\pi}{3}, -\frac{1}{2}\right)$	
π	-1	$(\pi, -1)$	
$\frac{4\pi}{3}$	$-\frac{1}{2}$	$\left(\frac{4\pi}{3}, -\frac{1}{2}\right)$	
$\frac{3\pi}{2}$	0	$\left(\frac{3\pi}{2},0\right)$	
$\frac{5\pi}{3}$	$\frac{1}{2}$	$\left(\frac{5\pi}{3},\frac{1}{2}\right)$	
2π	1	$(2\pi, 1)$	

Figure 48 $y = \cos x$, $0 \le x \le 2\pi$

Figure 49 $y = \cos x$, $-\infty < x < \infty$

Properties of the Cosine Function

- 1. The domain is the set of all real numbers.
- **2.** The range consists of all real numbers from -1 to 1, inclusive.
- **3.** The cosine function is an even function, as the symmetry of the graph with respect to the *y*-axis indicates.
- **4.** The cosine function is periodic, with period 2π .
- 5. The x-intercepts are ..., $-\frac{3\pi}{2}$, $-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$,...; the y-intercept is 1.
- **6.** The maximum value is 1 and occurs at $x = ..., -2\pi, 0, 2\pi, 4\pi, 6\pi, ...$; the minimum value is -1 and occurs at $x = ..., -\pi, \pi, 3\pi, 5\pi, ...$

Sin

Figure 61

The graph is sinusoidal, with amplitude |A| = 2. The period is 4, so $\frac{2\pi}{\omega} = 4$, or $\omega = \frac{\pi}{2}$. Since the graph passes through the origin, it is easier to view the equation as a sine function,[†] but note that the graph is actually the reflection of a sine function about the x-axis (since the graph is decreasing near the origin). This requires that A = -2. The sine function whose graph is given in Figure 61 is

$$y = A \sin(\omega x) = -2 \sin\left(\frac{\pi}{2}x\right)$$

T=4 then 4/1 = 2pi/w then cross multiply and solve for w. Answer us pi/2

The graph has the characteristics of a cosine function. Do you see why? The maximum value, 3, occurs at x = 0. So we view the equation as a cosine function $y = A \cos(\omega x)$

with A=3 and period T=1. Then $\frac{2\pi}{\omega}=1$, so $\omega=2\pi$. The cosine function whose graph is given in Figure 60 is

$$y = A\cos(\omega x) = 3\cos(2\pi x)$$

T=1 then 1/1 = 2pi/w then cross multiply and solve for w. Answer us 2pi

THEOREM

If $\omega > 0$, the amplitude and period of $y = A \sin(\omega x)$ and $y = A \cos(\omega x)$ are given by

Amplitude =
$$|A|$$
 Period = $T = \frac{2\pi}{\omega}$ (1)

Determine the amplitude and period of $y = 3 \sin(4x)$.

Comparing $y = 3\sin(4x)$ to $y = A\sin(\omega x)$, we find that A = 3 and $\omega = 4$. From equation (1),

Amplitude =
$$|A| = 3$$
 Period = $T = \frac{2\pi}{\omega} = \frac{2\pi}{4} = \frac{\pi}{2}$

If
$$\omega > 0$$
 $y = A \cos(\omega x)$ Amplitude = $|A|$ Period = $T = \frac{2\pi}{\omega}$

 $Y = 6 \sin(\pi x)$

// then 6 = A // then $\pi = \omega$ thus $2 \pi / \pi = 2$ thus 2 = T = Period

ı

Amplitude is 6 and Period = 2

Exercises

Determine the amplitude and the period of the function without graphing.

(a)
$$y = -5\cos(6x)$$

(b)
$$y = 3\sin(\pi x)$$

(a)
$$y = -5\cos(6x)$$
 (b) $y = 3\sin(\pi x)$ (c) $y = \frac{1}{3}\sin(2x)$ (d) $y = \cos(\frac{x}{\pi})$

(d)
$$y = \cos(\frac{x}{\pi})$$

Which function matches the graph shown in the following graph?

(a)
$$y = \cos x$$

(b)
$$y = \cos 2x$$

(b)
$$y = \cos 2x$$
 (c) $y = \sin 2x$ (d) $y = \sin x$

(d)
$$y = \sin x$$

