Mathematica Tip Sheet

Built-In Constants:

	$\pi = \texttt{Pi}$	$e = \mathtt{E}$	$i=\sqrt{-1}={\tt I}$	$\infty = \texttt{Infinity}$
Built-In Functions:				
	Abs[x]		Sin[x]	ArcSin[x]
	Sqrt[x]		Cos[x]	ArcCos[x]
	Exp[x]		Tan[x]	ArcTan[x]
	Log[x] (= ln	x)	Sec[x]	ArcSec[x]

Log[b, x] $(= \log_b(x))$

n! or Factorial[n]

Grouping:

$\operatorname{Parentheses}$ - ()	Used for grouping for basic operations, like +, -, *, /, $$.
Square Brackets - []	Used for functions to indicate the variable quantity to be used. $(f[x])$.
Curly Braces - $\{ \}$	Used for lists, vectors, matrices, and ranges of values for options.

Csc[x]

Cot[x]

ArcCsc[x]

ArcCot[x]

Assigning Values:

x = value	Assigns <i>value</i> to the variable x.
x = y = value	Assigns <i>value</i> (the same value) to <u>both</u> the variables x and y .
Clear[x,y]	Clears all values (if any) previously assigned to x and y. (USE OFTEN!)
x == y	Tests whether \mathbf{x} is equal to \mathbf{y} , often used when trying to solve equations.
expr/.x-> value	Replaces every x in <i>expr</i> with <i>value</i> .
$expr/.{x-> xval, y-> yval}$	Replaces x and y in <i>expr</i> with <i>xval</i> and <i>yval</i> , respectively.
f[x] = expr	Defines a function f , of one variable. Remember the underscore (_)!
g[x_, y_]= <i>expr</i>	Defines a function g , of two variables.

Some Algebra Commands:

Expand[expr]	Multiplies out products and powers in the $expr$.
Factor[<i>expr</i>]	Factors <i>expr</i> over the integers.
Apart[<i>expr</i>]	Decomposes $expr$ into partial fractions.
Simplify[expr]	Performs algebraic transformations to give the simplest form of $expr$.
Solve[lhs==rhs,x]	Solves the polynomial equation $lhs = rhs$ (exactly) for x. (Notice the double equal sign ==.)
FindRoot[$lhs == rhs, \{x, a, b\}$]	Numerically solves the polynomial equation $lhs=rhs$ for x, starting in the interval (a, b).
a=x/.Solve[lhs==rhs,x]	Stores the solution value as the variable a . If there is more than one solution, add [[n]] at the end of the command to store the n^{th} result as a .
$sol=x/.FindRoot[lhs==rhs, {x,a,b}]$	Stores the solution value as the variable sol.
Solve[$\{eq1, eq2,, eqN\}$, $\{x1, x2,, eqN\}$,	
	Solves a system of \mathbb{N} equations (written with ==), for the variables $x1, \ldots, x\mathbb{N}$.

Manipulating Lists and Vectors:

letters={a,b,c}	A list called letters with three entries, a, b, and c. OR A vector called letters with components, a, b, and c.
letters[[n]]	Returns the n^{th} element in the list called letters. (letters[[3]] = c).
Dot[u,v] or u.v	Returns the dot product of two vectors u and v.
Cross[u,v]	Returns the cross product of two <u>three-dimensional</u> vectors u and v .
Table[f[x], $\{x,a,b,n\}$]	Creates a table (list) of values of f[x], going from x=a to x=b in increments of n. (If no increment is specified, the default value of 1 is used.)
Tableform[list]	Prints the elements of a list in a vertical table.

Some Calculus Commands:

D[expr,x]Finds $\frac{d}{dx}(expr)$.D[expr,{x,n}]Finds $\frac{d^n}{dx^n}(expr)$.f'[x]Finds the first derivative of a previously defined function f[x].f''[x]Finds the second derivative of a previously defined function f[x].Integrate[expr,x]Evaluates the indefinite integral $\int expr dx$.Integrate[expr,{x,a,b}]Evaluates the definite integral $\int_a^b expr dx$.Limit[expr,x->a]Evaluates $\lim_{x \to a} expr$.Sum[a[n],{n,a,b}]Evaluates $\sum_{n=a}^{b} a[n]$.

Some Graphics Commands:

 Sine Graphics Commands.	
<pre>Plot[f[x],{x,a,b},options]</pre>	Creates a 2D plot of $y=f[x]$ for the interval $a \le x \le b$.
$Plot[{f[x], g[x]}, {x,a,b}, options]$	Creates a 2D plot of $y=f[x]$ and $y=g[x]$ on a single set of axes.
$Plot3D[f[x,y], \{x,a,b\}, \{y,c,d\}, options]$	Creates a 3D plot of $z=f[x,y]$ over the region $a \le x \le b$, $c \le y \le d$.
<pre>ParametricPlot[f[t],{t,a,b},options]</pre>	Creates a 2D plot of the parametrically defined function
	$f[t]={x[t],y[t]}$ for $a \leq t \leq b$.
<pre>ParametricPlot3D[f[t],{t,a,b},options]</pre>	Creates a 3D plot of the parametrically defined function
	$f[t]=\{x[t],y[t],z[t]\} \text{ for } a \leq t \leq b.$
ListPlot[{{x1,y1},{x2,y2},{x3,y3}}]	Plots the points with coordinates $(x1, y1)$, $(x2, y2)$, $(x3, y3)$.
Show[$\{graph1, graph2\}, options$]	Displays the two graphs graph1, graph2 on a single set of axes.

Some Selected Plot Options:

AspectRatio->value	Sets the height-to-width ratio for the plot.
Axes->False	Exclude axes in the plot. (Default is True).
$AxesLabel->\{xlabel,ylabel\}$	Labels to put on the axes.
PlotPoints->value	The number of points to plot. (Default is 25).
<pre>PlotRange->{min,max}</pre>	The range of values to display on the plot.
$PlotStyle -> \{Thickness[w]\}$	Gives all curves a thickness of w as a fraction of the plot width.
<pre>PlotStyle->{RGBColor[a,b,c]}</pre>	Produces color graphs: a, b, and c are values between 0 and 1 which represent the saturation of red, green, and blue, respectively.

A Few Other Useful Commands:

%	Refers to the last answer output from Mathematica. Caution: This is the last output generated, which is not necessarily the answer directly above the line on which % is entered.
N[<i>expr</i> ,n]	Returns a decimal value for <i>expr</i> , with n significant digits.
//N	When typed after another command, converts it to a numerical (decimal) result.
Semicolon: ;	Used at the end of successive lines of input, it evaluates, but suppresses output.
Space:	Used between two variables, it indicates a multiplication. For example, $x y$ (with the space) means $x*y$, but xy (without any space) refers to a variable name.

Some Menu Commands / Other Items:

$\begin{bmatrix} \text{SHIFT} \end{bmatrix} + \begin{bmatrix} \text{ENTER} \end{bmatrix}$ Cell \rightarrow Delete All Output	Executes an input cell. Deletes all output in the active notebook.
Evaluation \rightarrow Abort Evaluation	Stops the evaluation of a cell which is currently running.
$Palettes \rightarrow BasicMathInput$	Opens general palette with basic symbols.
Evaluation \rightarrow Quit Kernel \rightarrow Local	Clears all memory in current session.
$\mathrm{Help} \to \mathrm{Documentation}\ \mathrm{Center}$	Opens the Help Browser.