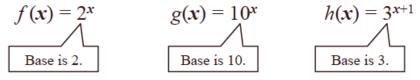
Objective 09 Understand, solve, graph and apply exponential and logarithmic equations including familiarity with the change of base formula to evaluate logarithms

Exponentials equations

Definition of the Exponential Function

The exponential function f with base b is defined by $f(\mathbf{x}) = b^x$ or $\mathbf{y} = b^x$ Where b is a positive constant other than and x is any rule number.

Here are some examples of exponential functions.



Understand & Solve

The value of $f(x) = 3^x$ when x = 2 is

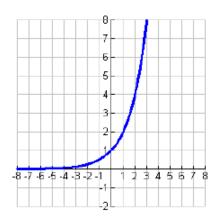
$$f(2) = 3^2 = 9$$

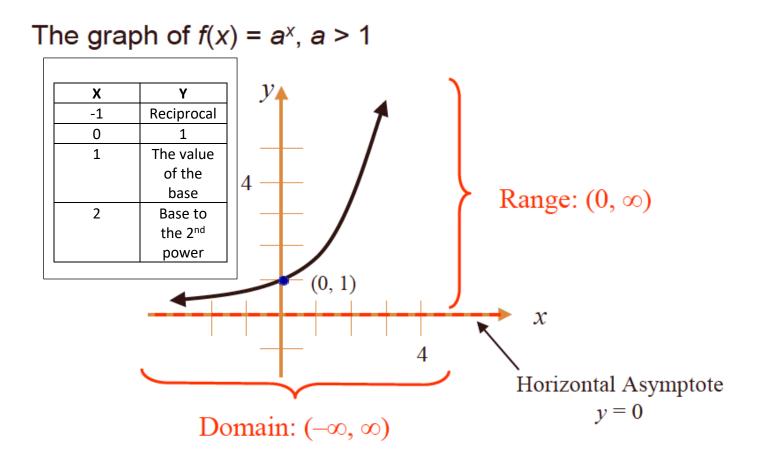
The value of
$$f(x) = 3^x$$
 when $x = -2$ is
 $f(-2) = 3^{-2} = \frac{1}{9}$

The value of $g(x) = 0.5^x$ when x = 4 is $g(4) = 0.5^4 = 0.0625$ Graph

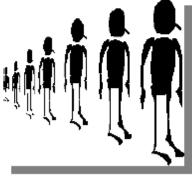
Definition of Exponential Functions

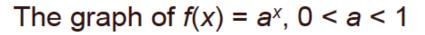
- The exponential function *f* with a base *b* is defined by f(x) = b^x where b is a positive constant other than 1 (b > 0, and b ≠ 1) and x is any real number.
- So, $f(x) = 2^x$, looks like:

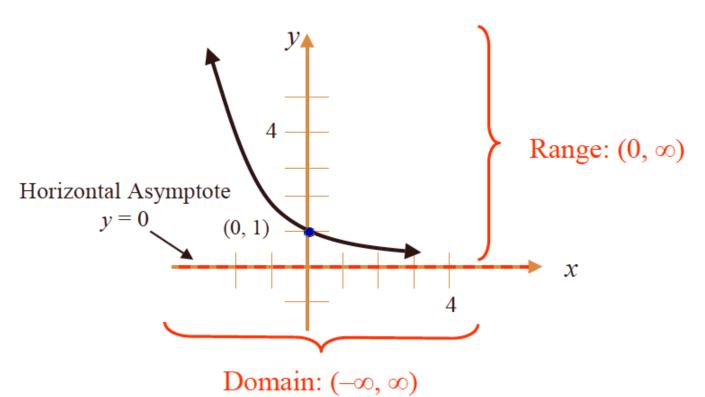




Population growth often modeled by exponential function

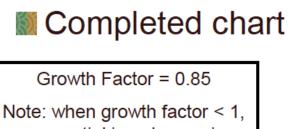






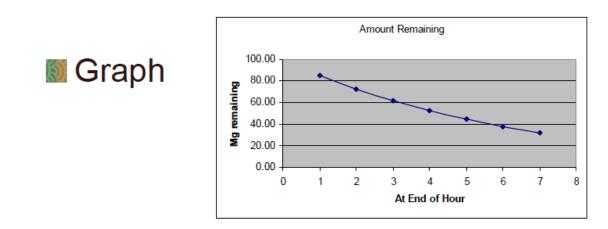
Half life of radioactive materials modeled by exponential function

Decreasing Exponentials



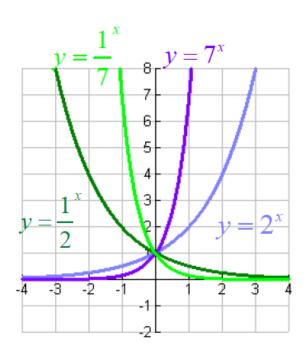
exponential is a <u>decreasing</u> function

At and of hour	Amount Domoining
At end of hour	Amount Remaining
1	85.00
2	72.25
3	61.41
4	52.20
5	44.37
6	37.71
7	32.06



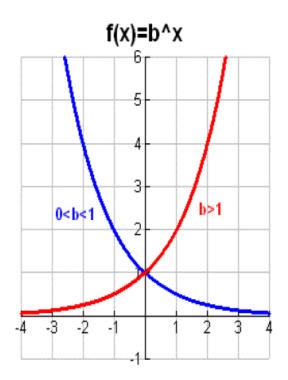
Graphing Exponential Functions

 Four exponential functions have been graphed.
 Compare the graphs of functions where b > 1 to those where b < 1



Graphing Exponential Functions

- So, when b > 1, f(x) has a graph that goes up to the right and is an increasing function.
- When 0 < b < 1, f(x) has a graph that goes down to the right and is a decreasing function.



Characteristics

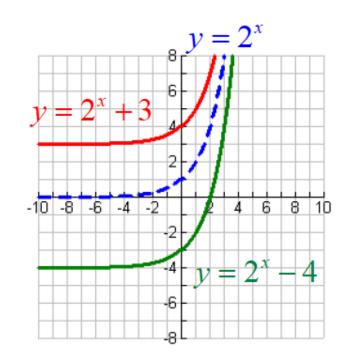
- The domain of f(x) = b^x consists of all real numbers (-∞, ∞). The range of f(x) = b^x consists of all positive real numbers (0, ∞).
- The graphs of all exponential functions pass through the point (0,1). This is because $f(o) = b^0 = 1$ (b $\neq o$).
- The graph of f(x) = b^x approaches but does not cross the x-axis. The x-axis is a horizontal asymptote.
- f(x) = b^x is one-to-one and has an inverse that is a function.

Transformations Defined

Transformation	Equation	Description
Horizontal translation	$g(\mathbf{x}) = b^{\mathbf{x}+c}$	 Shifts the graph of f (x) = b^x to the left c units if c > 0. Shifts the graph of f (x) = b^x to the right c units if c < 0.
Vertical stretching or shrinking	$g(\mathbf{x}) = c \ b^{\mathbf{x}}$	 Multiplying <i>y</i>-coordinates of f (x) = b^x by c, Stretches the graph of f (x) = b^x if c > 1. Shrinks the graph of f (x) = b^x if 0 < c < 1.
Reflecting	$g(\mathbf{x}) = -b^{\mathbf{x}}$ $g(\mathbf{x}) = b^{-\mathbf{x}}$	 Reflects the graph of f (x) = b^x about the x-axis. Reflects the graph of f (x) = b^x about the y-axis.
Vertical translation	$g(\mathbf{x}) = -b^{\mathbf{x}} + c$	 Shifts the graph of f (x) = b^x upward c units if c > 0. Shifts the graph of f (x) = b^x downward c units if c < 0.

Transformations

- Vertical translation f(x) = b^x + c
- Shifts the graph up if c > 0
- Shifts the graph down if c < 0</p>

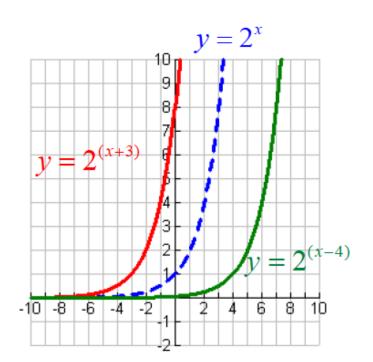


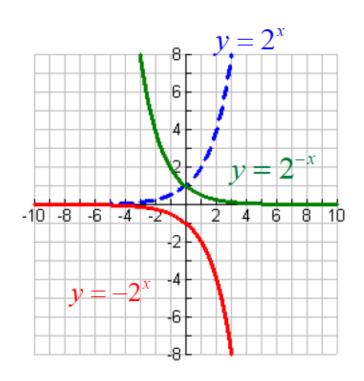
Horizontal translation: g(x)=b^{x+c}

- Shifts the graph to the left if c > 0
- Shifts the graph to the right if c < 0</p>

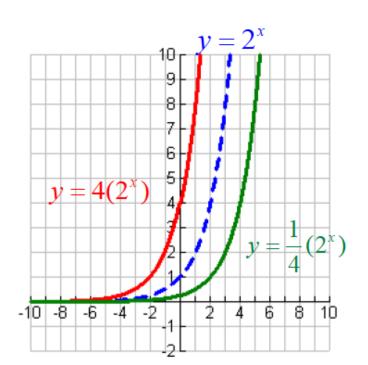
Reflecting

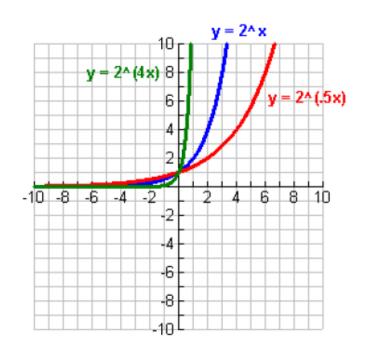
- g(x) = -b^x reflects the graph about the x-axis.
- g(x) = b^{-x} reflects the graph about the y-axis.





- Vertical stretching or shrinking, f(x)=cb^x:
- Stretches the graph if c > 1
- Shrinks the graph if 0 < c < 1</p>
- Horizontal stretching or shrinking, f(x)=b^{cx}:
- Shinks the graph if c > 1
- Stretches the graph if 0 < c < 1

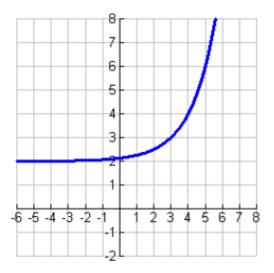




EXCERCISES

- Graph the function f(x) = 2^(x-3) +2
- Where is the horizontal asymptote?

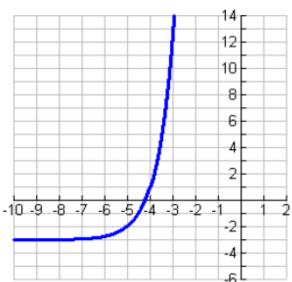
y = 2



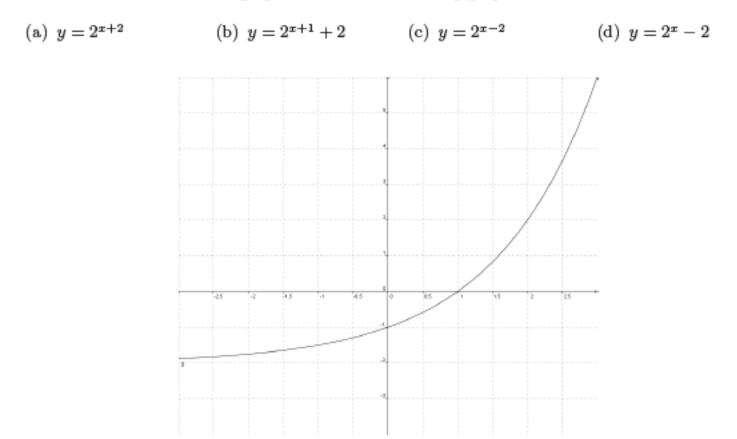
Graph the function f(x) = 4^(x+5) - 3

Where is the horizontal asymptote?

y = - 3



Which function matches the graph shown in the following graph ?

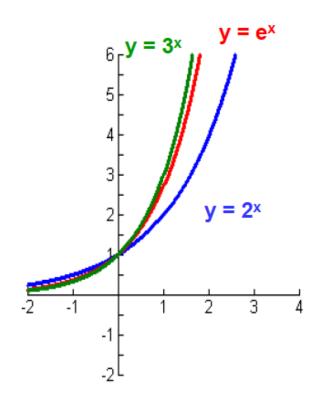


The Number e

- The number e is known as Euler's number. Leonard Euler (1700's) discovered it's importance.
- The number e has physical meaning. It occurs naturally in any situation where a quantity increases at a rate proportional to its value, such as a bank account producing interest, or a population increasing as its members reproduce.

The Number e - Definition

- Since 2 < e < 3, the graph of y = e^x is between the graphs of y = 2^x and y = 3^x
- e^x is the 2nd function on the In key on your calculator



Natural Base

- The irrational number e, is called the natural base.
- The function f(x) = e^x is called the natural exponential function.

Apply equations

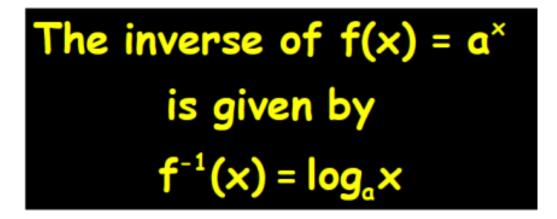
Solve the following equations. If there is no solution, state "No Solution".

$\left(\frac{1}{3}\right)^{3x+5} = 9^x$	$5^{-x-9} = 625$	$\left(\frac{1}{2}\right)^{5x+5} = \left(\frac{1}{4}\right)^4$	$2^{x^2+5x} = 4^{-3}$

$\log_a x = y \leftrightarrow x = a^y$

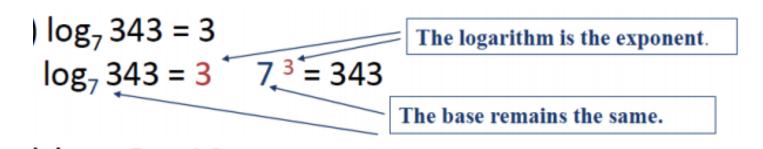
A logarithm is an exponent!

 Remember: Logarithmic functions are inverses of exponential functions.



Understand & Solve,

$\mathbf{x} = \mathbf{b}^{\mathbf{y}}$	1
Equivalent	Solution
Exponential	
Equation	
$16 = 2^{y}$	$16 = 2^4 \rightarrow y = 4$
1	1
$\frac{-}{2} = 2^{y}$	$\frac{1}{2} = 2^{-1} \rightarrow y = -1$
16 = 4y	$16 = 4^2 \rightarrow y = 2$
10 4	10 4 4 9 2
1 = 5 y	$1 = 5^0 \rightarrow y = 0$
	Equivalent Exponential Equation $16 = 2^{y}$ $\frac{1}{2} = 2^{y}$ $16 = 4^{y}$



Graph

Facts about the Graph of a Logarithmic

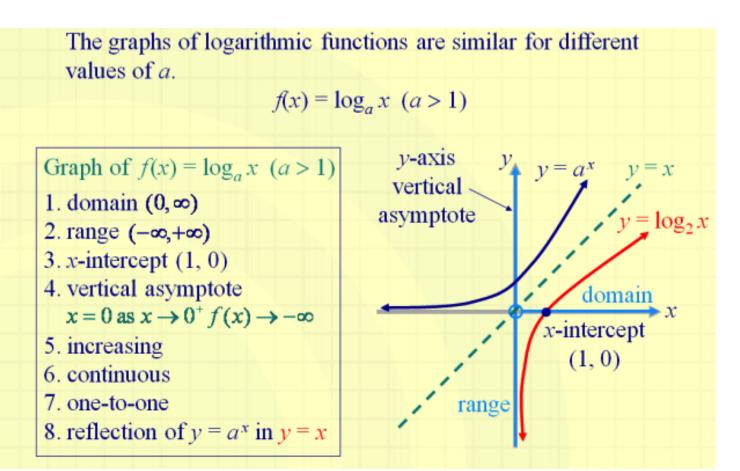
Function $f(x) = \log_b x$

1. The *x*-intercept of the graph is 1. There is no *y*-intercept.

2. The *y*-axis is a vertical asymptote of the graph.

3. A logarithmic function is decreasing if 0 < b < 1 and increasing if b > 1.

4. The graph is smooth and continuous, with no corners or gaps.

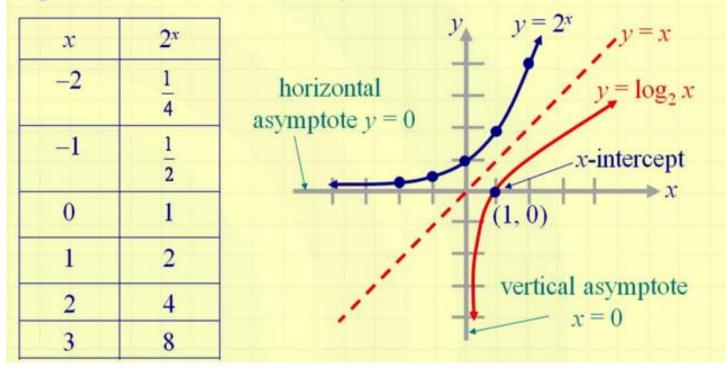


y = log _b **x** has the following properties

- Domain (0, ∞), Range (-∞, ∞)
- It passes through the point (1,0)
- It passes through the point (b, 1)
- The y- axis is an asymptote.
- If b > 1, it is an increasing function
- If 0 < b < 1, it is a decreasing function

 $\operatorname{Graph} f(x) = \log_2 x$

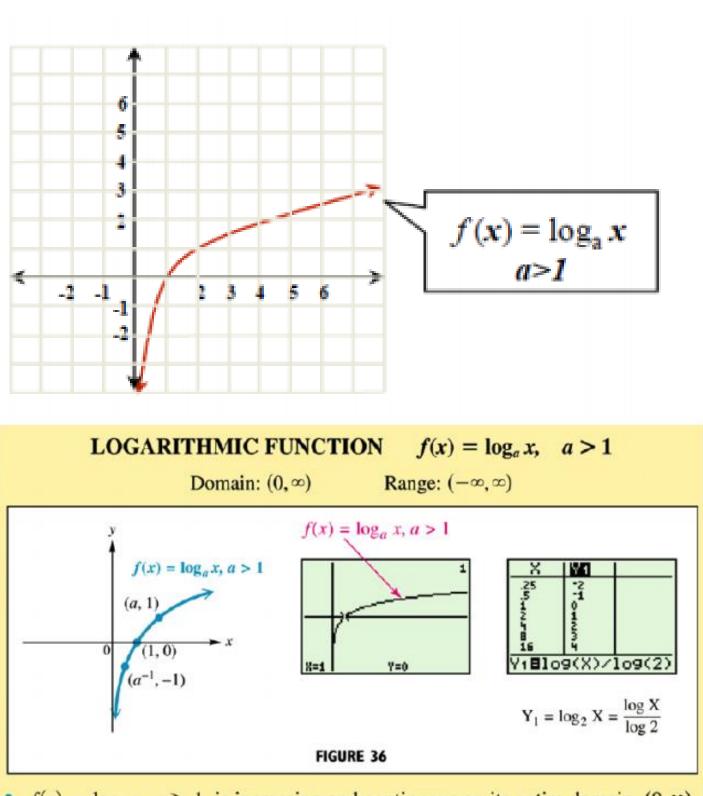
Since the logarithm function is the *inverse* of the exponential function of the same base, its graph is the reflection of the exponential function in the line y = x.



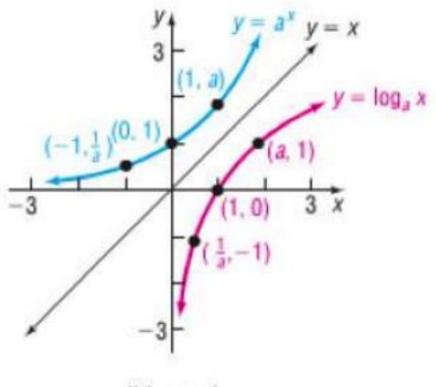
Transformations Involving Logarithmic Functions

Vertical	$f(x) = c + \log_b x$	Up c units
Translation	$f(x) = -c + \log_b x$	Down c units
Horizontal	$f(x) = \log_{b} (x + c)$	Left c units
Translation	$f(x) = \log_{b} (x - c)$	Right c units
Stretching:		
Vertical	$f(x) = c \log_b x$	Stretches by c
Horizontal	$f(x) = \log_b cx$	Stretches by 1/c
Reflection	$f(x) = \log_{b}(-x)$	About y-axis
	$f(x) = -\log_b x$	About x-axis

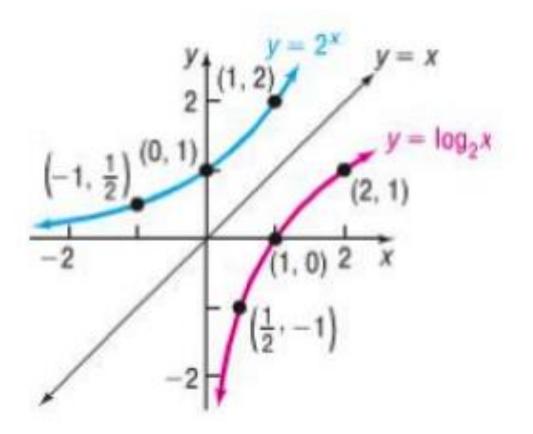
Apply equations

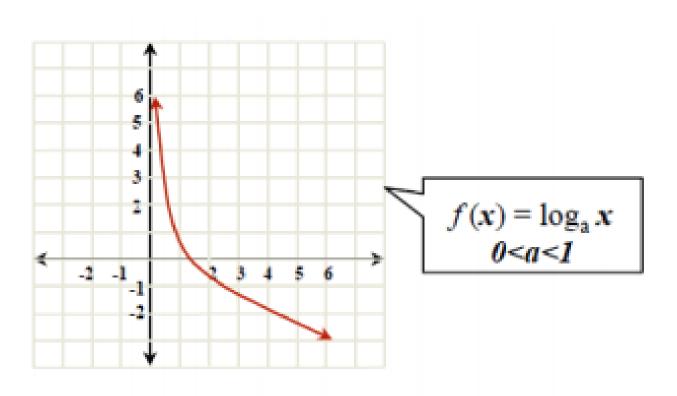


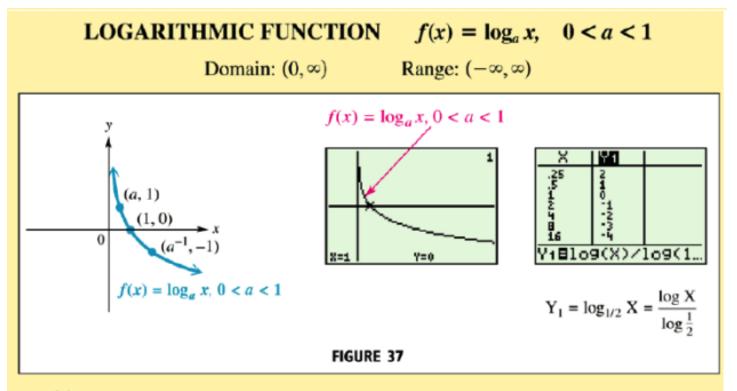
- $f(x) = \log_a x, a > 1$, is increasing and continuous on its entire domain, $(0, \infty)$.
- The y-axis is a vertical asymptote as $x \to 0$ from the right.
- The graph goes through the points $(a^{-1}, -1)$, (1, 0), and (a, 1).



(b) a > 1



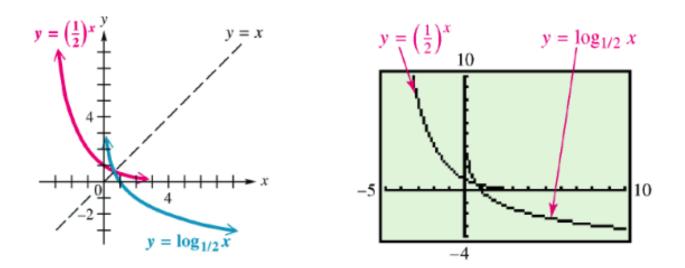


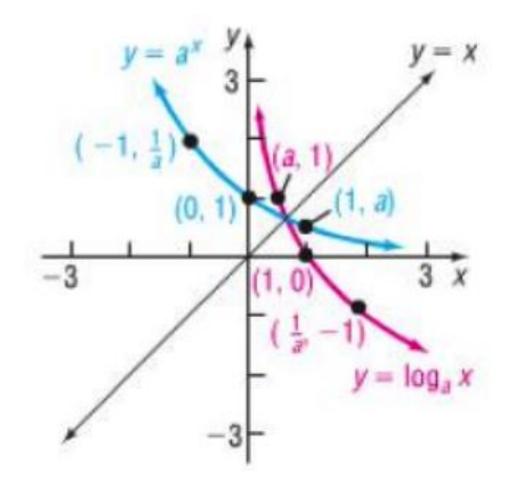


- f(x) = log_a x, 0 < a < 1, is decreasing and continuous on its entire domain, (0,∞).
- The y-axis is a vertical asymptote as $x \to 0$ from the right.
- The graph goes through the points (a, 1), (1, 0), and $(a^{-1}, -1)$.

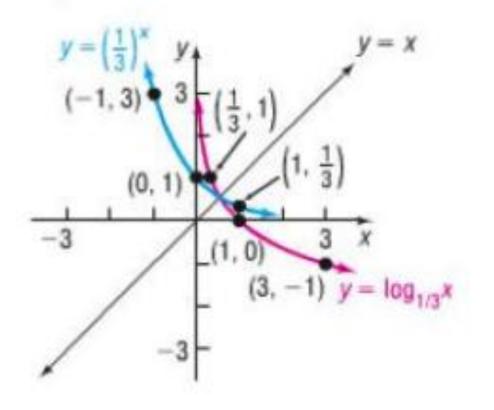
Graphs Logs Func 0<a<1

 Below are typical shapes for such graphs where 0 < a < 1





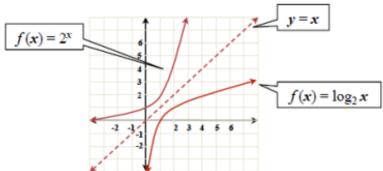
(a) 0 < a < 1



Graph $f(x) = 2^x$ and $g(x) = \log_2 x$ in the same rectangular coordinate system.

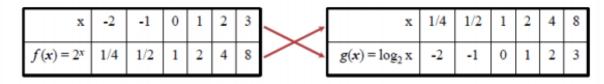
Solution

We now sketch the basic exponential graph. The graph of the inverse (logarithmic) can also be drawn by reflecting the graph of $f(x) = 2^x$ over the line y = x.



Graph $f(x) = 2^x$ and $g(x) = \log_2 x$ in the same rectangular coordinate system.

Solution We first set up a table of coordinates for $f(x) = 2^x$. Reversing these coordinates gives the coordinates for the inverse function, $g(x) = \log_2 x$.



Reverse coordinates.

BASE e

Summary Logs Base "e" and In

- log x means ln x
- These are called natural logarithms
- y = ln x is the inverse of y = e^x
- The domain of y = ln x is (0, ∞)
- The range is the interval (-∞, ∞)

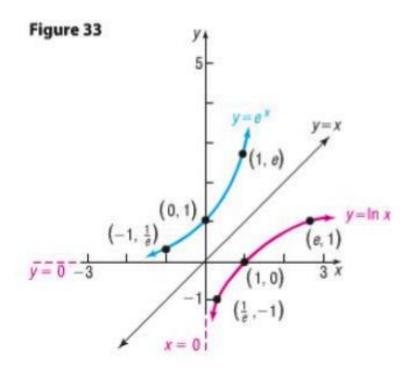
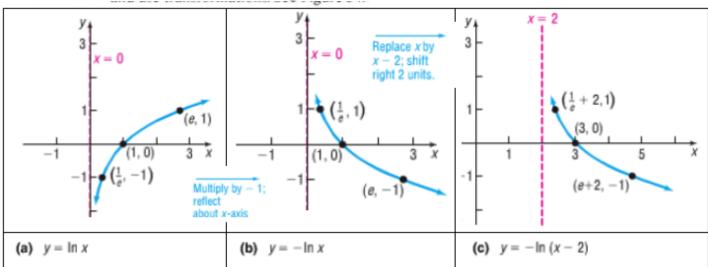


Table 7	x	ln x
	$\frac{1}{2}$	-0.69
	2	0.69
	3	1.10

Graphing a Logarithmic Function and Its Inverse

- (a) Find the domain of the logarithmic function $f(x) = -\ln(x 2)$.
- (b) Graph f.
- (c) From the graph, determine the range and vertical asymptote of f.
- (d) Find f^{-1} , the inverse of f.
- (e) Find the domain and the range of f⁻¹.
- (f) Graph f^{-1} .
- (a) The domain of f consists of all x for which x 2 > 0 or, equivalently, x > 2. The domain of f is {x|x > 2} or (2, ∞) in interval notation.
- (b) To obtain the graph of $y = -\ln(x 2)$, we begin with the graph of $y = \ln x$ and use transformations. See Figure 34.



- (c) The range of $f(x) = -\ln(x 2)$ is the set of all real numbers. The vertical asymptote is x = 2. [Do you see why? The original asymptote (x = 0) is shifted to the right 2 units.]
- (d) To find f^{-1} , begin with $y = -\ln(x 2)$. The inverse function is defined (implicitly) by the equation

$$x = -\ln(y - 2)$$

Proceed to solve for y.

 $\begin{aligned} -x &= \ln(y-2) & \text{loolate the logarithm.} \\ e^{-x} &= y-2 & \text{Change to an exponential statement.} \\ y &= e^{-x}+2 & \text{Solve for y.} \end{aligned}$

The inverse of f is $f^{-1}(x) = e^{-x} + 2$.

- (e) The domain of f⁻¹ equals the range of f, which is the set of all real numbers, from part (c). The range of f⁻¹ is the domain of f, which is (2, ∞) in interval notation.
- (f) To graph f^{-1} , use the graph of f in Figure 34(c) and reflect it about the line y = x. See Figure 35. We could also graph $f^{-1}(x) = e^{-x} + 2$ using transformations.

including familiarity with the change of base formula to evaluate logarithms