Objective 09 Understand, solve, graph and apply exponential and logarithmic equations including familiarity with the change of base formula to evaluate logarithms

Exponentials equations

Definition of the Exponential Function

The exponential function f with base b is defined by

$$
f(\mathrm{x})=b^{x} \text { or } \boldsymbol{y}=b^{x}
$$

Where b is a positive constant other than and \boldsymbol{x} is any rud number.

Here are some examples of exponential functions.

Understand \& Solve

$$
\begin{aligned}
\text { The value of } f(x) & =3^{x} \text { when } x=2 \text { is } \\
f(2) & =3^{2}=9 \\
\text { The value of } f(x) & =3^{x} \text { when } x=-2 \text { is } \\
f(-2) & =3^{-2}=\frac{1}{9}
\end{aligned}
$$

The value of $g(x)=0.5^{x}$ when $x=4$ is

$$
g(4)=0.5^{4}=0.0625
$$

Definition of Exponential Functions

The exponential function f with a base b is defined by $f(x)=b^{x}$ where b is a positive constant other than 1 (b >0, and $b \neq 1$) and x is any real number. So, $f(x)=2^{x}$, looks like:

The graph of $f(x)=a^{x}, a>1$

Population growth often modeled by exponential function

The graph of $f(x)=a^{x}, 0<a<1$

Domain: $(-\infty, \infty)$
邅 Half life of radioactive materials modeled by exponential function

Decreasing Exponentials

Graphing Exponential Functions

Four exponential functions have been graphed. Compare the graphs of functions where $\mathrm{b}>1$ to those where $b<1$

Graphing Exponential Functions

So, when $\mathrm{b}>1$,
$f(x)$ has a graph
that goes up to the right and is an increasing function.
When $0<b<1$,
$f(x)$ has a graph
that goes down to
the right and is a
decreasing function.

Characteristics

The domain of $f(x)=b^{x}$ consists of all real numbers $(-\infty, \infty)$. The range of $f(x)=b^{x}$ consists of all positive real numbers $(0, \infty)$.
The graphs of all exponential functions pass through the point $(0,1)$. This is because $f(o)=b^{0}=1(b \neq 0)$.
The graph of $f(x)=b^{x}$ approaches but does not cross the x-axis. The x-axis is a horizontal asymptote.
$f(x)=b^{x}$ is one-to-one and has an inverse that is a function.

Transformations Defined

Transformation	Equation	Description
Horizontal translation	$g(\mathrm{x})=b^{\mathbf{x}+c}$	- Shifts the graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{b}^{\mathbf{x}}$ to the left c units if $c>0$. - Shifts the graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{b}^{\mathbf{x}}$ to the right c units if $c<0$.
Vertical stretching or shrinking	$g(\mathrm{x})=c b^{x}$	Multiplying \boldsymbol{y}-coordintates of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{b}^{\boldsymbol{x}}$ by c, - Stretches the graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{b}^{\mathbf{x}}$ if $\mathrm{c}>1$. - Shrinks the graph of $f(\boldsymbol{x})=\boldsymbol{b}^{\mathbf{x}}$ if $0<\mathrm{c}<1$.
Reflecting	$\begin{aligned} & g(\mathrm{x})=-b^{x} \\ & g(\mathrm{x})=b^{-x} \end{aligned}$	- Reflects the graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{b}^{\mathbf{x}}$ about the \boldsymbol{x}-axis. - Reflects the graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{b}^{\mathbf{x}}$ about the \boldsymbol{y}-axis.
Vertical translation	$g(\mathrm{x})=-b^{x}+c$	- Shifts the graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{b}^{\mathrm{x}}$ upward c units if $\mathrm{c}>0$. - Shifts the graph of $f(\boldsymbol{x})=\boldsymbol{b}^{\mathbf{x}}$ downward c units if $\mathrm{c}<0$.

Transformations

Vertical

translation
$f(x)=b^{x}+c$
Shifts the graph up if $\mathrm{c}>0$

Shifts the graph down if $\mathrm{c}<0$

Horizontal translation:
$g(x)=b^{x+c}$

Shifts the graph to the left if $\mathrm{c}>0$
Shifts the graph to the right if $\mathrm{c}<0$

Reflecting

$g(x)=-b^{x}$ reflects the graph about the x-axis.
$\mathrm{g}(\mathrm{x})=\mathrm{b}^{-\mathrm{x}}$ reflects the graph about the y-axis.

Vertical
stretching or
shrinking,
$f(x)=c^{x}$:
Stretches the
graph if c > 1
Shrinks the graph if
$0<c<1$

Horizontal stretching or shrinking, $f(x)=b^{c x}$:
Shinks the graph if c > 1
Stretches the graph if $0<c<1$

Graph the function $\mathrm{f}(\mathrm{x})$
$=2^{(x-3)}+2$
Where is the horizontal asymptote?

$$
y=2
$$

Graph the function $f(x)$
$=4^{(x+5)}-3$
Where is the horizontal asymptote?

$$
y=-3
$$

Which function matches the graph shown in the following graph ?
(a) $y=2^{x+2}$
(b) $y=2^{x+1}+2$
(c) $y=2^{x-2}$
(d) $y=2^{x}-2$

The Number e

The number e is known as Euler's number. Leonard Euler (1700's) discovered it's importance.
The number e has physical meaning. It occurs naturally in any situation where a quantity increases at a rate proportional to its value, such as a bank account producing interest, or a population increasing as its members reproduce.

The Number e - Definition

Since $2<e<3$, the graph of $y=e^{x}$ is
between the
graphs of $y=2^{x}$ and $y=3^{x}$

覑 e^{x} is the $2^{\text {nd }}$ function on the In key on your calculator

Natural Base

The irrational number e, is called the natural base.

- The function $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ is called the natural exponential function.

Apply equations
Solve the following equations. If there is no solution, state "No Solution".

$\left(\frac{1}{3}\right)^{3 x+5}=9^{x}$	$5^{-x-9}=625$	$\left(\frac{1}{2}\right)^{5 x+5}=\left(\frac{1}{4}\right)^{4}$	$2^{x^{2}+5 x}=4^{-3}$

$$
\begin{gathered}
\log _{a} x=y \leftrightarrow x=a^{y} \\
\text { A logarithm is an exponent. }
\end{gathered}
$$

- Remember: Logarithmic functions are inverses of exponential functions.

The inverse of $f(x)=a^{x}$ is given by $f^{-1}(x)=\log _{a} x$

Understand \& Solve, $y=\log _{b} x$ Logarithmic Equation

$$
x=b^{y}
$$

Equivalent
Exponential
Equation

Solution

$$
\begin{aligned}
& 16=2^{4} \rightarrow y \\
&=4 \\
& \frac{1}{2}=2^{-1} \rightarrow y=-1 \\
& 16=4^{2} \rightarrow y=2 \\
& 1=5^{0} \rightarrow y=0
\end{aligned}
$$

$1 \log _{7} 343=3$
$\log _{7} 343=3$
$7,3^{2}=343$ The logarithm is the exponent.
The base remains the same.

Graph
Facts about the Graph of a Logarithmic
Function $f(x)=\log _{b} x$

1. The x-intercept of the graph is 1 . There is no y-intercept.
2. The y-axis is a vertical asymptote of the graph.
3. A logarithmic function is decreasing if $<\mathrm{b}<1$ and increasing if $\mathrm{b}>1$.
4. The graph is smooth and continuous, with no corners or gaps.

The graphs of logarithmic functions are similar for different values of a.

$$
f(x)=\log _{a} x \quad(a>1)
$$

Graph of $f(x)=\log _{a} x(a>1)$

1. domain $(0, \infty)$
2. range $(-\infty,+\infty)$
3. x-intercept $(1,0)$
4. vertical asymptote
$x=0$ as $x \rightarrow 0^{+} f(x) \rightarrow-\infty$
5. increasing
6. continuous
7. one-to-one
8. reflection of $y=a^{x}$ in $y=x$

$\mathbf{y}=\log _{b} \mathbf{x}$ has the following properties

- Domain $(0, \infty)$, Range $(-\infty, \infty)$
- It passes through the point $(1,0)$
- It passes through the point $(b, 1)$
- The y - axis is an asymptote.
- If $b>1$, it is an increasing function
- If $0<b<1$, it is a decreasing function

Graph $f(x)=\log _{2} x$
Since the logarithm function is the inverse of the exponential function of the same base, its graph is the reflection of the exponential function in the line $y=x$.

x	2^{x}
-2	$\frac{1}{4}$
-1	$\frac{1}{2}$
0	1
1	2
2	4
3	8

Transformations Involving Logarithmic Functions

Vertical Translation	$\begin{aligned} & \mathrm{f}(\mathrm{x})=\mathrm{c}+\log _{\mathrm{b}} \mathrm{x} \\ & \mathrm{f}(\mathrm{x})=-\mathrm{c}+\log _{\mathrm{b}} \mathrm{x} \end{aligned}$	Up c units Down c units
Horizontal	$\mathrm{f}(\mathrm{x})=\log _{\mathrm{b}}(\mathrm{x}+$	Left c units
Translation	$f(x)=\log _{b}(x-c)$	Right c units
Stretching: Vertical Horizontal	$\begin{aligned} & \mathrm{f}(\mathrm{x})=\mathrm{c} \log _{\mathrm{b}} \mathrm{x} \\ & \mathrm{f}(\mathrm{x})=\log _{\mathrm{b}} \mathrm{cx} \end{aligned}$	Stretches by c Stretches by $1 / \mathrm{c}$
Reflection	$\begin{aligned} & \mathrm{f}(\mathrm{x})=\log _{\mathrm{b}}(-\mathrm{x}) \\ & \mathrm{f}(\mathrm{x})=-\log _{\mathrm{b}} \mathrm{x} \end{aligned}$	About y-axis About x -axis

LOGARITHMIC FUNCTION $\quad f(x)=\log _{a} x, a>1$
Domain: $(0, \infty) \quad$ Range: $(-\infty, \infty)$

$$
Y_{1}=\log _{2} X=\frac{\log X}{\log 2}
$$

FIGURE 36

- $f(x)=\log _{a} x, a>1$, is increasing and continuous on its entire domain, $(0, \infty)$.
- The y-axis is a vertical asymptote as $x \rightarrow 0$ from the right.
- The graph goes through the points $\left(a^{-1},-1\right),(1,0)$, and $(a, 1)$.

(b) $a>1$

LOGARITHMIC FUNCTION $\quad f(x)=\log _{a} x, \quad 0<a<1$
Domain: $(0, \infty) \quad$ Range: $(-\infty, \infty)$

- $f(x)=\log _{a} x, 0<a<1$, is decreasing and continuous on its entire domain, $(0, \infty)$.
- The y-axis is a vertical asymptote as $x \rightarrow 0$ from the right.
- The graph goes through the points $(a, 1),(1,0)$, and $\left(a^{-1},-1\right)$.

Graphs Logs Func 0<a<1

- Below are typical shapes for such graphs where $0<a<1$

(a) $0<a<1$

Graph $f(\boldsymbol{x})=2^{\boldsymbol{x}}$ and $g(\boldsymbol{x})=\log _{2} \boldsymbol{x}$ in the same rectangular coordinate system.

Solution

We now sketch the basic exponential graph. The graph of the inverse (logarithmic) can also be drawn by reflecting the graph of $f(\boldsymbol{x})=2^{x}$ over the line $\mathrm{y}=\mathrm{x}$.

Graph $f(\boldsymbol{x})=2^{\boldsymbol{x}}$ and $g(\boldsymbol{x})=\log _{2} \boldsymbol{x}$ in the same rectangular coordinate system.

Solution We first set up a table of coordinates for $f(\boldsymbol{x})=2^{x}$. Reversing these coordinates gives the coordinates for the inverse function, $g(\boldsymbol{x})=\log _{2} \boldsymbol{x}$.

x	-2	-1	0	1	2	3
$f(x)=2^{x}$	$1 / 4$	$1 / 2$	1	2	4	8
$g(x)=\log _{2} \mathrm{x}$	-2	-1	0	1	2	3

Reverse coordinates.

BASE e

Summary Logs Base "e" and In

- $\log _{e} x$ means $\ln x$
- These are called natural logarithms
- $y=\ln x$ is the inverse of $y=e^{x}$
- The domain of $y=\ln x$ is $(0, \infty)$
- The range is the interval $(-\infty, \infty)$

Table 7

\boldsymbol{x}	$\ln \boldsymbol{x}$
$\frac{1}{2}$	-0.69
2	0.69
3	1.10

Graphing a Logarithmic Function and Its Inverse

(a) Find the domain of the logarithmic function $f(x)=-\ln (x-2)$.
(b) Graph f.
(c) From the graph, determine the range and vertical asymptote of f.
(d) Find f^{-1}, the inverse of f.
(e) Find the domain and the range of f^{-1}.
(f) Graph f^{-1}.
(a) The domain of f consists of all x for which $x-2>0$ or, equivalently, $x>2$.

The domain of f is $\{x \mid x>2\}$ or $(2, \infty)$ in interval notation.
(b) To obtain the graph of $y=-\ln (x-2)$, we begin with the graph of $y=\ln x$ and use transformations. See Figure 34.

(c) The range of $f(x)=-\ln (x-2)$ is the set of all real numbers. The vertical asymptote is $x=2$. [Do you see why? The original asymptote $(x=0)$ is shifted to the right 2 units.]
(d) To find f^{-1}, begin with $y=-\ln (x-2)$. The inverse function is defined (implicitly) by the equation

$$
x=-\ln (y-2)
$$

Proceed to solve for y.

$$
\begin{aligned}
-x & =\ln (y-2) & & \text { Isolate the logarithm. } \\
e^{-x} & =y-2 & & \text { Change to an exponential otatement. } \\
y & =e^{-x}+2 & & \text { Solve for } y .
\end{aligned}
$$

The inverse of f is $f^{-1}(x)=e^{-x}+2$.
(e) The domain of f^{-1} equals the range of f, which is the set of all real numbers, from part (c). The range of f^{-1} is the domain of f, which is $(2, \infty)$ in interval notation.
(f) To graph f^{-1}, use the graph of f in Figure 34(c) and reflect it about the line $y=x$. See Figure 35. We could also graph $f^{-1}(x)=e^{-x}+2$ using transformations.
including familiarity with the change of base formula to evaluate logarithms

