Objective 09 HW 08

Understand, solve, graph and apply exponential and logarithmic equations including familiarity with the change of base formula to evaluate logarithms

1. Evaluate the following expressions:
(a) 5^{-3}
(b) $64^{\frac{2}{3}}$
(c) $27^{\frac{2}{3}}$
(d) $\left(\frac{1}{3}\right)^{2}$
2. Suppose $g(x)=2^{x}+4$, What is $g(-1)$? If $g(x)=12$, what is x ?
3. Determine the exponetial function whose graph is given.

4. Solve the following equations:

$5^{x^{2}}=125^{x}$	$6^{x^{2}-13}=36^{6 x}$	$5^{-x-9}=625$	$2^{x^{2}+5 x}=4^{-3}$
$\left(\frac{1}{2}\right)^{5 x+5}=\left(\frac{1}{4}\right)^{4}$	$\left(\frac{1}{3}\right)^{3 x+5}=9^{x}$		

5. Identify the graph of the equation $f(x)=2 e^{-x}$.

6.

Which function matches the graph shown in the following graph ?
(a) $y=2^{x+2}$
(b) $y=2^{x+1}+2$
(c) $y=2^{x-2}$
(d) $y=2^{x}-2$

07. to 10

True or false: The graph of $y=2^{x}$ and $y=\left(\frac{1}{2}\right)^{x}$ are symmetric with respect to the y-axis.

True or false: For the equation $y=a^{x}(a>0, a \neq 0), y \rightarrow \infty$ as $x \rightarrow \infty$.
For the exponential function $f(x)=a^{x}$ the domain is \qquad and the range is

The exponential function $f(x)=a^{x}$ is increasing when \qquad and is decreasing when \qquad -

