SUMMARY Properties of Logarithms

In the list that follows, a, b, M, N, and r are real numbers. Also, $a>0, a \neq 1, b>0, b \neq 1, M>0$, and $N>0$.

Definition
Properties of logarithms

Change-of-Base Formula

$$
y=\log _{a} x \text { means } x=a^{y}
$$

$$
\log _{a} 1=0 ; \quad \log _{a} a=1 \quad \log _{a} M^{r}=r \log _{a} M
$$

$$
a^{\log _{a} M}=M ; \quad \log _{a} a^{r}=r
$$

$$
a^{x}=e^{x \ln a}
$$

$$
\log _{a}(M N)=\log _{a} M+\log _{a} N \quad \text { If } M=N, \text { then } \log _{a} M=\log _{a} N .
$$

$$
\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N \quad \text { If } \log _{a} M=\log _{a} N, \text { then } M=N
$$

$$
\log _{a} M=\frac{\log _{b} M}{\log _{b} a}
$$

Properties of Logarithms (Recall that logs are only defined for positive values of x.)

For the natural logarithm For logarithms base a

1. $\ln x y=\ln x+\ln y$
2. $\log _{a} x y=\log _{a} x+\log _{a} y$
3. $\ln \frac{x}{y}=\ln x-\ln y$
4. $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$
5. $\ln x^{y}=y \cdot \ln x$
6. $\log _{a} x^{y}=y \cdot \log _{a} x$
7. $\ln e^{x}=x$
8. $\log _{a} a^{x}=x$
9. $e^{\ln x}=x$
10. $a^{\log _{a} x}=x$

Useful Identities for Logarithms

General Properties

1. $\log _{b} 1=0$
2. $\log _{b} b=1$
3. $\log _{b} b^{x}=0$
4. $b^{\log _{b} x}=x$

For the natural logarithm

1. $\ln e=1$
2. $\ln 1=0$

For logarithms base a

1. $\log _{a} a=1$, for all $a>0$
2. $\log _{a} 1=0$, for all $a>0$

Natural Logarithms

1. $\ln 1=0$
2. $\ln e=1$
3. $\ln e^{x}=x$
4. $e^{\ln x}=x$

Properties of Natural Logarithms

1. $\ln 1=0$ since $e^{0}=1$.
2. $\ln e^{=} 1$ since $e^{1}=e$.
3. $\ln e^{x}=x$ and $\mathrm{e}^{\ln \mathrm{x}}=x$
4. If $\ln x=\ln y$, then $x=y$.
inverse property $\log _{a} 1=0 \quad \log _{a} a=1$

Properties of Logarithms

In the following properties, M, N, and a are positive real numbers, $a \neq 1$, and r is any real number.

The Log of a Product Equals the Sum of the Logs

$$
\begin{equation*}
\log _{a}(M N)=\log _{a} M+\log _{a} N \tag{3}
\end{equation*}
$$

The Log of a Quotient Equals the Difference of the Logs

$$
\begin{equation*}
\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N \tag{4}
\end{equation*}
$$

The Log of a Power Equals the Product of the Power and the Log

$$
\begin{equation*}
\log _{a} M^{r}=r \log _{a} M \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
a^{x}=e^{x \ln a} \tag{6}
\end{equation*}
$$

Exercises

Use the properties of logarithms to expand or simplify the following expression as much as possible. Simplify any numerical expressions that can be evaluated without a calculator.

$$
\begin{aligned}
\log _{a} 7+4 \log _{a} 3 & =\log _{a} 7+\log _{a} 3^{4} \quad r \log _{a} M=\log _{a} M \\
& =\log _{a} 7+\log _{a} 81 \\
& =\log _{a}(7 \cdot 81) \\
& =\log _{a} 567
\end{aligned} \quad \log _{a} M+\log _{a} N=\log _{a}(M \cdot N)
$$

Product Rule

$$
\log _{a} x+\log _{a} 9+\log _{a}\left(x^{2}+1\right)-\log _{a} 5=\log _{a}(9 x)+\log _{a}\left(x^{2}+1\right)-\log _{a} 5
$$

$$
=\log _{a}\left[9 x\left(x^{2}+1\right)\right]-\log _{a} 5
$$

$$
\rightarrow=\log _{a}\left[\frac{9 x\left(x^{2}+1\right)}{5}\right]
$$

