Exponential Functions, Graphs & Applications

Section 5.1, 5.2

Math 120

Definition of the Exponential Function

The exponential function f with base b is defined by

$$f(\mathbf{x}) = b^x$$
 or $\mathbf{y} = b^x$

Where b is a positive constant other than and x is any rul number.

Here are some examples of exponential functions.

The value of $f(x) = 3^x$ when x = 2 is

$$f(2) = 3^2 = 9$$

The value of $f(x) = 3^x$ when x = -2 is $f(-2) = 3^{-2} = \frac{1}{9}$

The value of $g(x) = 0.5^x$ when x = 4 is

$$g(4) = 0.5^4 = 0.0625$$

Definition of Exponential Functions

The exponential function *f* with a base *b* is defined by $f(x) = b^x$ where *b* is a positive constant other than 1 (*b* > 0, and *b* \neq 1) and *x* is any real number.

So, $f(x) = 2^x$, looks like:

The graph of $f(x) = a^x$, 0 < a < 1

Graphing Exponential Functions

 Four exponential functions have been graphed.
 Compare the graphs of functions where b > 1 to those where b < 1

Graphing Exponential Functions

So, when b > 1, f(x) has a graph that goes up to the right and is an increasing function.

When 0 < b < 1, f(x) has a graph that goes down to the right and is a decreasing function.

Characteristics

- The domain of $f(x) = b^x$ consists of all real numbers (- ∞ , ∞). The range of $f(x) = b^x$ consists of all positive real numbers (0, ∞).
- The graphs of all exponential functions pass through the point (0,1). This is because $f(o) = b^0 = 1$ (b $\neq o$).
- The graph of f(x) = b^x approaches but does not cross the x-axis. The x-axis is a horizontal asymptote.
- f(x) = b^x is one-to-one and has an inverse that is a function.

Transformations Defined

Transformation	Equation	Description
Horizontal translation	$g(\mathbf{x}) = b^{\mathbf{x}+c}$	 Shifts the graph of f (x) = b^x to the left c units if c > 0. Shifts the graph of f (x) = b^x to the right c units if c < 0.
Vertical stretching or shrinking	$g(\mathbf{x}) = c \ b^{\mathbf{x}}$	Multiplying <i>y</i> -coordinates of $f(x) = b^x$ by <i>c</i> , • Stretches the graph of $f(x) = b^x$ if $c > 1$. • Shrinks the graph of $f(x) = b^x$ if $0 < c < 1$.
Reflecting	$g(\mathbf{x}) = -b^x$ $g(\mathbf{x}) = b^{-x}$	 Reflects the graph of f (x) = b^x about the x-axis. Reflects the graph of f (x) = b^x about the y-axis.
Vertical translation	$g(\mathbf{x}) = -b^x + c$	 Shifts the graph of f(x) = b^x upward c units if c > 0. Shifts the graph of f(x) = b^x downward c units if c < 0.

- Vertical translation f(x) = b^x + c
- Shifts the graph up if c > 0
- Shifts the graph down if c < 0

- Horizontal translation: g(x)=b^{x+c}
- Shifts the graph to the left if c > 0
- Shifts the graph to the right if c < 0</p>

Reflecting

- g(x) = -b^x reflects the graph about the x-axis.
- g(x) = b^{-x} reflects the graph about the y-axis.

- Vertical stretching or shrinking, f(x)=cb^x:
- Stretches the graph if c > 1
- Shrinks the graph if 0 < c < 1</p>

- Horizontal stretching or shrinking, f(x)=b^{cx}:
- Shinks the graph if c > 1
- Stretches the graph if 0 < c < 1</p>

You Do

Graph the function $f(x) = 2^{(x-3)} + 2$

Where is the horizontal asymptote?

y = 2

You Do, Part Deux

Graph the function $f(x) = 4^{(x+5)} - 3$

Where is the horizontal asymptote?
y = - 3

The Number e

- The number e is known as Euler's number. Leonard Euler (1700's) discovered it's importance.
- The number e has physical meaning. It occurs naturally in any situation where a quantity increases at a rate proportional to its value, such as a bank account producing interest, or a population increasing as its members reproduce.

An irrational number, symbolized by the letter e, appears as the base in many applied exponential functions. It models a variety of situations in which a quantity grows or decays continuously: money, drugs in the body, probabilities, population studies, atmospheric pressure, optics, and even spreading rumors!

The number e is defined as the value that $\left(1+\frac{1}{n}\right)^n$ approaches as n gets larger and larger.

The table shows the values of $A_0 \left(1 + \frac{1}{n}\right)^n$ as n gets increasingly large.

As $n \rightarrow \infty$, the approximate value of e (to 9 decimal places) is \approx 2.718281827

n	$\left(1+\frac{1}{n}\right)^n$	
1	2	
2	2.25	
5	2.48832	
10	2.59374246	
100	2.704813829	
1000	2.716923932	
10,000	2.718145927	
100,000	2.718268237	
1,000,000	2.718280469	
1,000,000,000	2.718281827	
$A \ s \ n \rightarrow \infty, \left(1 + \frac{1}{n}\right)^n \rightarrow e$		

- For our purposes, we will use e ≈ 2.718.
- e is 2nd function on the division key on your calculator.

Since 2 < e < 3, the graph of y = e^x is between the graphs of y = 2^x and y = 3^x

e^x is the 2nd function on the In key on your calculator

Natural Base

The irrational number e, is called the natural base.

The function $f(x) = e^x$ is called the natural exponential function.

Compound Interest

The formula for compound interest:

$$A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$$

Where n is the number of times per year interest is being compounded and r is the *annual* rate.

Compound Interest

Consider an amount A₀ of money deposited in an account

Pays annual rate of interest *r* percent

Compounded *m* times per year

- Stays in the account *n* years
- Then the resulting balance A_n

$$A_n = A_0 \left(1 + \frac{r}{m}\right)^{m \cdot n}$$

Compound Interest - Example

Which plan yields the most interest?

- Plan A: A \$1.00 investment with a 7.5% annual rate compounded monthly for 4 years
- Plan B: A \$1.00 investment with a 7.2% annual rate compounded daily for 4 years

A:
$$1\left(1+\frac{0.075}{12}\right)^{12(4)} \approx 1.3486$$

B: $1\left(1+\frac{0.072}{365}\right)^{365(4)} \approx 1.3337$

Interest Compounded Continuously

If interest is compounded "all the time" (MUST use the word continuously), we use the formula

$$A(t) = Pe^{rt}$$

where P is the initial principle (initial amount)

 $A(t) = Pe^{rt}$

If you invest \$1.00 at a 7% annual rate that is compounded continuously, how much will you have in 4 years?

$$1 * e^{(.07)(4)} \approx 1.3231$$

You will have a whopping \$1.32 in 4 years!

You Do

You decide to invest \$8000 for 6 years and have a choice between 2 accounts. The first pays 7% per year, compounded monthly. The second pays 6.85% per year, compounded continuously. Which is the better investment?

You Do Answer 1st Plan: $A(6) = 8000 \left(1 + \frac{0.07}{12}\right)^{12(6)} \approx $12,160.84$

2nd Plan:

 $P(6) = 8000e^{0.0685(6)} \approx \$12,066.60$

Exponential Modeling

Population growth often modeled by exponential function

Half life of radioactive materials modeled by exponential function

Growth Factor

Recall formula new balance = old balance + 0.05 * old balance Another way of writing the formula new balance $\neq 1.05^{*}$ old balance Why equivalent? Growth factor: 1 + interest rate as a fraction

Decreasing Exponentials

Consider a medication

Patient takes 100 mg

- Once it is taken, body filters medication out over period of time
- Suppose it removes 15% of what is present in the blood stream every hour

	At end of hour	Amount remaining	
	1	100 – 0.15 * 100 = 85	
Fill in the rest of the table	2	85 – 0.15 * 85 = 72.25	What is the growth factor
	3		
	4		
	5		

Decreasing Exponentials

Completed chart

Growth Factor = 0.85

Note: when growth factor < 1, exponential is a <u>decreasing</u> function

M Graph

At end of hour	Amount Remaining
1	85.00
2	72.25
3	61.41
4	52.20
5	44.37
6	37.71
7	32.06

Solving Exponential Equations Graphically

For our medication example when does the amount of medication amount to less than 5 mg

- Graph the function for 0 < t < 25</p>
- Use the graph to determine when

$$M(t) = 100 \cdot 0.85^t < 5.0$$

General Formula

All exponential functions have the general format:

$$f(t) = A \cdot B^{t}$$

Where

- A = initial value
- B = growth rate
- t = number of time periods

Typical Exponential Graphs

When B > 1

$$f(t) = A \cdot B^t$$

When B < 1

