Review of
 Basic Concepts

Sections R.5-R. 7

R
 Review of Basic Concepts

R. 5 Rational Expressions

R. 6 Rational Exponents

R. 7 Radical Expressions

R. 5 Rational Expressions

Rational Expressions - Lowest Terms of a Rational Expression • Multiplication and Division - Addition and Subtraction Complex Fractions

R. 5 Example 1 Finding the Domain (page 41)

Find the domain of the rational expression.

$$
\frac{(x-7)(x-1)}{(x+3)(x-1)}
$$

Set the denominator equal to zero.

$$
\begin{array}{rlrl}
x+3 & =0 & \text { or } & x-1=0 \\
x & =-3 & \text { or } & x=1 \\
\{x \mid x & \neq-3,1\} &
\end{array}
$$

R. 5 Example 2(a) Writing Rational Expressions in Lowest Terms (page 42)

Write the rational expression in lowest terms.
(a) $\frac{12 x^{2}-30 x}{4 x^{2}-25}=\frac{6 x(2 x-5)}{(3 x+5)(2 x-5)} \quad$ Factor.

$$
=\frac{6 x}{2 x+5} \quad \begin{aligned}
& \text { Divide out the } \\
& \text { common factor. }
\end{aligned}
$$

R. 5 Example 2(b) Writing Rational Expressions in Lowest Terms (page 42)

Write the rational expression in lowest terms.
(b) $\frac{x^{2}-8 x-16}{8 x-2 x^{2}}=\frac{(x-4)^{2}}{2 x(4-x)} \quad$ Factor.
$=-\frac{(x-4)^{2}}{2 x(x-4)} \quad \begin{aligned} & \text { Multiply numerator } \\ & \text { and denominator by } \\ & -1 .\end{aligned}$

$$
\begin{aligned}
& =-\frac{x-4}{2 x} \\
& =\frac{-(x-4)}{2 x} \text { or } \frac{4-x}{2 x}
\end{aligned}
$$

Divide out the common factor.

R. 5 Example 3(a) Multiplying or Dividing Rational Expressions (page 43)

Multiply.

$$
\begin{aligned}
& \frac{6 z^{6}}{7} \cdot \frac{28}{9 z^{2}}=\frac{6 z^{6} \cdot 28}{7 \cdot 9 z^{2}} \quad \text { Multiply. } \\
&=\frac{2 \cdot 3 \cdot 4 \cdot 7 \cdot z^{2} \cdot z^{4}}{7 \cdot 3 \cdot 3 \cdot z^{2}} \text { Factor. } \\
&=\frac{8 z^{4}}{3} \text { Divide out common factors, } \\
& \text { then simplify. }
\end{aligned}
$$

R. 5 Example 3(b) Multiplying or Dividing

 Rational Expressions (page 43)
Multiply.

$$
\begin{aligned}
& \frac{4 n^{2}+3 n-}{2 n^{2}+3 n-} 10 \\
&=\frac{2 n-1}{n+4} \\
&=\frac{(n+2)(4 n-5)}{(n+2)(2 n-1)} \cdot \frac{(2 n-1)}{(n+4)(2 n-5)(2 n-1)(n+4)} \quad \text { Fact } \\
&=\frac{4 n-5}{n+4} \quad \text { Divide out common factors, } \\
& \text { then simplify. }
\end{aligned}
$$

R. 5 Example 3(c) Multiplying or Dividing

 Rational Expressions (page 43)Divide.

$$
\begin{aligned}
\frac{5 z^{2}-16 z+3}{z^{2}}+ & z-12
\end{aligned} \frac{30 z^{2}-6 z}{2 z^{3}+8 z^{2}} .
$$

R. 5 Example 3(d) Multiplying or Dividing

 Rational Expressions (page 43)Multiply.

$$
\begin{aligned}
& \frac{x^{2}-1}{x^{3}-1} \cdot \frac{x y-2 y+3 x-6}{x y+3 x+y+3} \\
& \quad=\frac{(x-1)(x+1)}{(x-1)\left(x^{2}+x+1\right)} \cdot \frac{y(x-2)+3(x-2)}{x(y+3)+(y+3)} \quad \text { Factor. } \\
& \quad=\frac{(x-1)(x+1)}{(x-1)\left(x^{2}+x+1\right)} \cdot \frac{(y+3)(x-2)}{(x+1)(y+3)} \\
& \quad=\frac{x-2}{x^{2}+x+1} \quad \begin{array}{l}
\text { Multiply, then divide out } \\
\text { common factors. }
\end{array}
\end{aligned}
$$

R. 5 Example 4(a) Adding or Subtracting

Rational Expressions (page 44)

Add $\frac{3}{10 z^{4}}+\frac{2}{15 z^{2}}$
Find the LCD:

$$
\left.\begin{array}{rl}
10 z^{4} & =2 \cdot 5 \cdot z^{4} \\
15 z^{2} & =3 \cdot 5 \cdot z^{2}
\end{array}\right\} L C D=2 \cdot 3 \cdot 5 \cdot z^{4}=30 z^{4}-\begin{aligned}
\frac{3}{10 z^{4}}+\frac{2}{15 z^{2}} & =\frac{3 \cdot 3}{10 z^{4} \cdot 3}+\frac{2 \cdot 2 z^{2}}{15 z^{2} \cdot 2 z^{2}} \\
& =\frac{9}{30 z^{4}}+\frac{4 z^{2}}{30 z^{4}}=\frac{9+4 z^{2}}{30 z^{4}}
\end{aligned}
$$

R. 5 Example 4(b) Adding or Subtracting

Rational Expressions (page 44)

Add $\frac{7}{m-5}+\frac{2 m}{5-m}$
Find the LCD: $m-5=m-5$

$$
\left.\begin{array}{rl}
5-m & =(-1)(m-5)
\end{array}\right\} \mathrm{LCD}=m-5
$$

$$
\frac{7}{m-5}+\frac{2 m}{5-m}=\frac{7}{m-5}+\frac{2 m(-1)}{(5-m)(-1)}
$$

$$
=\frac{7}{m-5}+\frac{-2 m}{m-5}
$$

$$
=\frac{7-2 m}{m-5} \text { or } \frac{2 m-7}{5-m}
$$

R. 5 Example 4(c) Adding or Subtracting Rational Expressions (page 44)
Subtract $\frac{4}{(x-3)(x+5)}-\frac{6}{(x+5)(x-5)}$
Find the LCD: $(x-3)(x+5)(x-5)$

$$
\begin{aligned}
& \frac{4}{(x-3)(x+5)}-\frac{6}{(x+5)(x-5)} \\
& \quad=\frac{4(x-5)}{(x-3)(x+5)(x-5)}-\frac{6(x-3)}{(x-3)(x+5)(x-5)} \\
& \quad=\frac{4 x-20-(6 x-18)}{(x-3)(x+5)(x-5)}=\frac{-2 x-2}{(x-3)(x+5)(x-5)}
\end{aligned}
$$

R. 5 Example 5(a) Simplifying Complex Fractions (page 46)

Simplify $\frac{3+\frac{4}{x^{2}}}{6-\frac{1}{x^{2}}}$
Multiply the numerator and denominator by the LCD of all the fractions, x^{2}.

$$
\frac{3+\frac{4}{x^{2}}}{6-\frac{1}{x^{2}}}=\frac{x^{2}\left(3+\frac{4}{x^{2}}\right)}{x^{2}\left(6-\frac{1}{x^{2}}\right)}=\frac{3 x^{2}+4}{6 x^{2}-1}
$$

R. 5 Example 5(b) Simplifying Complex Fractions (page 46)

Simplify $\frac{\frac{1}{z+1}-\frac{1}{z-1}}{\frac{1}{z}+\frac{1}{z+1}}$
Multiply the numerator and denominator by the LCD of all the fractions, $z(z+1)(z-1)$.

$$
\begin{aligned}
\frac{1}{\frac{1}{z+1}-\frac{1}{z-1}} \frac{1}{z}+\frac{1}{z+1} & =\frac{z(z+1)(z-1)\left(\frac{1}{z+1}-\frac{1}{z-1}\right)}{z(z+1)(z-1)\left(\frac{1}{z}+\frac{1}{z+1}\right)} \\
& =\frac{z(z-1)-z(z+1)}{(z+1)(z-1)+z(z-1)} \\
& =\frac{z^{2}-z-z^{2}-z}{z^{2}-1+z^{2}-z}=\frac{-2 z}{2 z^{2}-z-1}
\end{aligned}
$$

R. 6 Rational Exponents

Negative Exponents and the Quotient Rule -
Rational Exponents - Complex Fractions Revisited
R. 6 Example 1 Using the Definition of a Negative Exponent (page 50)

Evaluate each expression.
(a) 10^{-3}
(b) -5^{-1}
(c) $\left(\frac{4}{9}\right)^{-2}$
(a) $10^{-3}=\frac{1}{10^{3}}=\frac{1}{1000}$
(b) $-5^{-1}=-\frac{1}{5}$
(c) $\left(\frac{4}{9}\right)^{-2}=\frac{1}{\left(\frac{4}{9}\right)^{2}}=\frac{1}{\frac{16}{81}}=\frac{81}{16}$

R. 6 Example 1 Using the Definition of a Negative Exponent (cont.)

Write the expression without negative exponents.
(d) $m n^{-4}=\frac{m}{n^{4}}$
(e) $(m n)^{-4}=\frac{1}{(m n)^{4}}=\frac{1}{m^{4} n^{4}}$

R. 6 Example 2 Using the Quotient Rule (page 51)

Simplify each expression.

$$
\begin{aligned}
& \begin{array}{l}
\text { (a) } \frac{15^{8}}{15^{3}}=15^{8-3}=15^{5} \quad \text { (b) } \frac{y^{4}}{y^{-9}}=y^{4-(-9)}=y^{13} \\
\text { (c) } \frac{35 r^{6}}{25 r^{-4}}=\frac{7 r^{6-(-4)}}{5}=\frac{7 r^{10}}{5} \\
\text { (d) } \frac{34 a^{8} b^{11}}{51 a^{12} b^{5}}=\frac{34}{51} \cdot \frac{a^{8}}{a^{12}} \cdot \frac{b^{11}}{b^{5}}=\frac{2}{3} a^{8-12} b^{11-5} \\
\\
=\frac{2}{3} a^{-4} b^{6}=\frac{2 b^{6}}{3 a^{4}}
\end{array}
\end{aligned}
$$

R. 6 Example 3(a) Using Rules for Exponents (page 51)

Simplify.

$$
\begin{aligned}
5 x^{3}\left(2^{-1} x^{4}\right)^{-3} & =5 x^{3}\left(2^{-1(-3)} x^{4(-3)}\right) \\
& =5 x^{3}\left(2^{3} x^{-12}\right) \\
& =5 x^{3-12}(8) \\
& =5 x^{-9}(8) \\
& =\frac{40}{x^{9}}
\end{aligned}
$$

R. 6 Example 3(b) Using Rules for Exponents (page 51)

Simplify.

$$
\begin{aligned}
\frac{30 r^{4} s^{-9}}{45 r^{-6} s^{3}} & =\frac{30}{45} \cdot \frac{r^{4}}{r^{-6}} \cdot \frac{s^{-9}}{s^{3}} \\
& =\frac{2}{3} \cdot r^{4-(-6)} \cdot s^{-9-3} \\
& =\frac{2}{3} \cdot r^{10} \cdot s^{-12} \\
& =\frac{2 r^{10}}{3 s^{12}}
\end{aligned}
$$

R. 6 Example 3(c) Using Rules for Exponents (page 51)

Simplify.

$$
\begin{aligned}
\frac{\left(4 b^{3}\right)^{-2}\left(4 b^{-1}\right)^{-3}}{\left(4^{-1} b^{3}\right)^{-4}} & =\frac{4^{-2} b^{3(-2)}\left(4^{-3}\right) b^{-1(-3)}}{4^{-1(-4)} b^{3(-4)}} \\
& =\frac{4^{-2} \cdot 4^{-3} b^{-6} b^{3}}{4^{4} b^{-12}} \\
& =\frac{4^{-2-3} b^{-6+3}}{4^{4} b^{-12}}=\frac{4^{-5} b^{-3}}{4^{4} b^{-12}} \\
& =4^{-5-4} b^{-3-(-12)}=4^{-9} b^{9}=\frac{b^{9}}{4^{9}}
\end{aligned}
$$

R. 6 Example 4 Using the Definition of $a^{1 / n}$ (page 52)

Evaluate each expression.

(a) $49^{1 / 2}=7$
(b) $-144^{1 / 2}=-12$
(c) $-(144)^{1 / 2}=-12$
(d) $64^{1 / 6}=2$
(e) $(-64)^{1 / 6}$
(f) $-64^{1 / 6}=-2$
not a real number

$$
\begin{array}{ll}
\text { (g) }(-125)^{1 / 3}=-5 & \text { (h) }-64^{1 / 3}=-4
\end{array}
$$

R. 6 Example 5 Using the Definition of $a^{m / n}$ (page 53)

Evaluate each expression.

(a) $81^{3 / 4}=\left(81^{1 / 4}\right)^{3}=3^{3}=27$
(b) $25^{3 / 2}=\left(25^{1 / 2}\right)^{3}=5^{3}=125$
(c) $-4^{5 / 2}=-\left(4^{1 / 2}\right)^{5}=-2^{5}=-32$

R. 6 Example 5 Using the Definition of $a^{m / n}$ (cont.)

Evaluate each expression.
(d) $(-64)^{2 / 3}=\left[(-64)^{1 / 3}\right]^{2}=(-4)^{2}=16$
(e) $216^{-2 / 3}=\left(216^{1 / 3}\right)^{-2}=6^{-2}=\frac{1}{6^{2}}=\frac{1}{36}$
(f) $(-100)^{3 / 2}$ is not a real number because $(-100)^{1 / 2}$ is not a real number.

R. 6 Example 6 Using the Rules for Exponents (page 54)

Simplify each expression.
(a) $\frac{18^{1 / 2} \cdot 18^{7 / 2}}{18^{3}}=\frac{18^{1 / 2+7 / 2}}{18^{3}}=18^{4-3}=18^{1}=18$
(b) $100^{3 / 2} \cdot 16^{-3 / 4}=\left(100^{1 / 2}\right)^{3}\left(16^{1 / 4}\right)^{-3}=10^{3} \cdot 2^{-3}$

$$
=10^{3} \cdot \frac{1}{2^{3}}=\frac{10^{3}}{2^{3}}=\frac{1000}{8}=125
$$

(c) $4 z^{3 / 4} \cdot 5 z^{2 / 5}=20 z^{3 / 4+2 / 5}=20 z^{23 / 20}$

R. 6 Example 6 Using the Rules for Exponents (cont.)

Simplify each expression.
(d) $\left(\frac{5 m^{4 / 3}}{n^{2 / 3}}\right)^{2}\left(\frac{m^{4}}{8 n^{5}}\right)^{1 / 3}=\frac{5^{2} m^{8 / 3}}{n^{4 / 3}} \cdot \frac{m^{4 / 3}}{8^{1 / 3} n^{5 / 3}}$

$$
=\frac{25 m^{8 / 3+4 / 3}}{2 n^{4 / 3+5 / 3}}=\frac{25 m^{4}}{2 n^{3}}
$$

(e) $y^{3 / 7}\left(y^{4 / 7}-5 y^{11 / 7}\right)=y^{3 / 7+4 / 7}-5 y^{3 / 7+11 / 7}$

$$
=y-5 y^{2}
$$

R. 6 Example 7 Factoring Expressions with Negative or Rational Exponents (page 54)
Factor out the least power of the variable or variable expression.

$$
\text { (a) } 28 y^{-5}+21 y^{-2}=7 y^{-5}\left(4+3 y^{3}\right)
$$

(b) $18 n^{4 / 3}-12 n^{1 / 3}=6 n^{1 / 3}(3 n-2)$

$$
\text { (c) } \begin{aligned}
(x+3)^{-2 / 5}-(x+3)^{3 / 5} & =(x+3)^{-2 / 5}[1-(x+3)] \\
& =(x+3)^{-2 / 5}(-2-x)
\end{aligned}
$$

R. 6 Example 8 Simplifying a Fraction with Negative Exponents (page 55)
Simplify. Write the result with only positive exponents.

$$
\begin{aligned}
\frac{x^{-1}+y^{-1}}{x^{-2}-y^{-2}} & =\frac{\frac{1}{x}+\frac{1}{y}}{\frac{1}{x^{2}}-\frac{1}{y^{2}}}=\frac{\frac{x+y}{x y}}{\frac{y^{2}-x^{2}}{x^{2} y^{2}}} \\
& =\frac{x^{2} y^{2} \cdot \frac{x+y}{x y}}{x^{2} y^{2} \cdot \frac{y^{2}-x^{2}}{x^{2} y^{2}}}=\frac{x y(x+y)}{y^{2}-x^{2}} \\
& =\frac{x y(x+y)}{(y-x)(y+x)}=\frac{x y}{y-x}
\end{aligned}
$$

Divide out the common factor

R. 7 Radical Expressions

Radical Notations - Simplified Radicals - Operations with Radicals - Rationalizing Denominators

R. 7 Example 1 Evaluating Roots (page 59)

Write each root using exponents and evaluate.
(a) $\sqrt[3]{27}=27^{1 / 3}=3$
(b) $-\sqrt[4]{10,000}=-10,000^{1 / 4}=-10$
(c) $\sqrt[3]{-216}=(-216)^{1 / 3}=-6$
(d) $\sqrt[4]{-81}$ is not a real number.

R. 7 Example 1 Evaluating Roots (cont.)

Write each root using exponents and evaluate.
(e) $\sqrt[3]{\frac{125}{512}}=\left(\frac{125}{512}\right)^{1 / 3}=\frac{125^{1 / 3}}{512^{1 / 3}}=\frac{5}{8}$
(f) $-\sqrt[5]{-243}=-(-243)^{1 / 5}=-(-3)=3$

R. 7 Example 2 Converting From Rational Exponents to Radicals (page 60)

Write in radical form and simplify.
(a) $16^{3 / 4}=(\sqrt[4]{16})^{3}=2^{3}=8$
(b) $(-64)^{2 / 3}=(\sqrt[3]{-64})^{2}=(-4)^{2}=16$
(c) $-121^{3 / 2}=-(\sqrt{121})^{3}=-11^{3}=-1331$
(d) $y^{7 / 8}=\sqrt[8]{y^{7}}, y \geq 0$

R. 7 Example 2 Converting From Rational Exponents to Radicals (cont.)

Write in radical form and simplify.
(e) $7 z^{4 / 5}=7 \sqrt[5]{z^{4}}$
(f) $12 q^{-1 / 4}=\frac{12}{\sqrt[4]{q}}, q>0$
(g) $(5 x+2 y)^{1 / 6}=\sqrt[6]{5 x+2 y}$

R. 7 Example 3 Converting From Radicals to Rational Exponents (page 60)

Write in exponential form.
(a) $\sqrt[7]{n^{3}}=n^{3 / 7}$
(b) $\sqrt[4]{10 x}=(10 x)^{1 / 4}$
(c) $15(\sqrt[3]{r})^{4}=15 r^{4 / 3}$
(d) $-2 \sqrt[5]{\left(3 x^{2}\right)^{8}}=-2 \sqrt[5]{3^{8} x^{16}}=-2 \cdot 3^{8 / 5} x^{16 / 5}$
(e) $\sqrt[3]{r^{2}+s^{4}}=\left(r^{2}+s^{4}\right)^{1 / 3}$
R. 7 Example 4 Using Absolute Value to Simplify Roots (page 61)

Simplify each expression.
(a) $\sqrt{z^{6}}=\sqrt{\left(z^{3}\right)^{2}}=\left|z^{3}\right|$
(b) $\sqrt[7]{t^{7}}=t^{7 / 7}=t$
(c) $\sqrt{81 r^{8} s^{10}}=\left|9 r^{4} s^{5}\right|=9 r^{4}\left|s^{5}\right|$
(d) $\sqrt[4]{(-3)^{4}}=|-3|=3$
R. 7 Example 4 Using Absolute Value to Simplify Roots (cont.)

Simplify each expression.
(e) $\sqrt[5]{m^{10}}=m^{10 / 5}=m^{2}$
(f) $\sqrt{(3 x-4)^{2}}=|3 x-4|$
(g) $\sqrt{x^{2}-10 x+25}=\sqrt{(x-5)^{2}}=|x-5|$

R. 7 Example 5 Simplifying Radical Expressions (page 62)

Simplify each expression.
(a) $\sqrt{5} \cdot \sqrt{45}=\sqrt{5 \cdot 45}=\sqrt{225}=15$
(b) $\sqrt[5]{n^{3}} \cdot \sqrt[5]{n^{2}}=\sqrt[5]{n^{3} \cdot n^{2}}=\sqrt[5]{n^{5}}=n$
(c) $\sqrt{\frac{11}{169}}=\frac{\sqrt{11}}{\sqrt{169}}=\frac{\sqrt{11}}{13}$

R. 7 Example 5 Simplifying Radical Expressions (cont.)

Simplify each expression.

(d) $\sqrt[6]{\frac{a}{b^{12}}}=\frac{\sqrt[6]{a}}{\sqrt[6]{b^{12}}}=\frac{\sqrt[6]{a}}{b^{2}}$
(e) $\sqrt[5]{\sqrt[4]{17}}=\sqrt[20]{17}$
(f) $\sqrt{\sqrt[6]{8}}=\sqrt[12]{8}$

R. 7 Example 6 Simplifying Radicals (page 62)

Simplify each radical.
(a) $\sqrt{288}=\sqrt{2 \cdot 144}=\sqrt{2} \cdot \sqrt{144}=12 \sqrt{2}$
(b) $-8 \sqrt[3]{125}=-8 \cdot 5=-40$
(c) $\sqrt[3]{128 a^{6} b^{8} c^{10}}=\sqrt[3]{2 \cdot 64 a^{6} b^{6} b^{2} c^{9} c}$

$$
=\sqrt[3]{\left(64 a^{6} b^{6} c^{9}\right)\left(2 b^{2} c\right)}
$$

$$
=4 a^{2} b^{2} c^{3} \sqrt[3]{2 b^{2} c}
$$

R. 7 Example 7 Adding and Subtracting

Like Radicals (page 63)

Add or subtract as indicated.

$$
\text { (a) } \begin{aligned}
14 \sqrt{5 p q}-11 \sqrt{5 p q} & =(14-11) \sqrt{5 p q} \\
& =3 \sqrt{5 p q}
\end{aligned}
$$

(b) $\sqrt{75 a b^{3}}-b \sqrt{12 a b}=\sqrt{3 \cdot 25 a b^{2} b}-b \sqrt{4 \cdot 3 a b}$

$$
\begin{aligned}
& =5 b \sqrt{3 a b}-2 b \sqrt{3 a b} \\
& =(5 b-2 b) \sqrt{3 a b} \\
& =3 b \sqrt{3 a b}
\end{aligned}
$$

R. 7 Example 7 Adding and Subtracting

 Like Radicals (cont.)Add or subtract as indicated.
(c) $\sqrt[3]{81 x^{5} y^{7}}+\sqrt[3]{24 x^{8} y^{4}}$

$$
\begin{aligned}
& =\sqrt[3]{27 \cdot 3 x^{3} x^{2} y^{6} y}+\sqrt[3]{8 \cdot 3 x^{6} x^{2} y^{3} y} \\
& =3 x y^{2} \sqrt[3]{3 x^{2} y}+2 x^{2} y \sqrt[3]{3 x^{2} y} \\
& =\left(3 x y^{2}+2 x^{2} y\right) \sqrt[3]{3 x^{2} y}
\end{aligned}
$$

R. 7 Example 8 Simplifying Radicals (page 64)

Simplify each radical.

(a) $\sqrt[10]{2^{5}}=2^{5 / 10}=2^{1 / 2}=\sqrt{2}$
(b) $\sqrt[3]{a^{9} b^{18}}=a^{9 / 3} b^{18 / 3}=a^{3} b^{6}$
(c) $\sqrt[6]{\sqrt[3]{4^{2}}}=\sqrt[18]{4^{2}}=4^{2 / 18}=4^{1 / 9}=\sqrt[9]{4}$

R. 7 Example 9(a) Multiplying Radical Expressions (page 64)

Find the product.

$$
\begin{aligned}
(\sqrt{11}+\sqrt{17})(\sqrt{11}-\sqrt{17}) & =(\sqrt{11})^{2}-(\sqrt{17})^{2} \begin{array}{l}
\text { Product of the } \\
\text { sum and } \\
\text { diference of } \\
\text { two terms. }
\end{array} \\
& =11-17=-6
\end{aligned}
$$

R. 7 Example 9(b) Multiplying Radical Expressions (page 64)

Find the product.

$$
\begin{aligned}
(5+\sqrt{32})(3-\sqrt{2}) & =(5+\sqrt{2 \cdot 16})(3-\sqrt{2}) \quad \text { Simplify } \sqrt{32} \\
& =(5+4 \sqrt{2})(3-\sqrt{2}) \\
& =15-5 \sqrt{2}+12 \sqrt{2}-4 \sqrt{2} \sqrt{2} \\
& =15-5 \sqrt{2}+12 \sqrt{2}-8 \\
& =7+7 \sqrt{2}
\end{aligned}
$$

R. 7 Example 10 Rationalizing Denominators (page 65)

Rationalize each denominator.
(a) $\frac{2}{\sqrt{7}}=\frac{2}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}=\frac{2 \sqrt{7}}{7}$
(b) $\sqrt[3]{\frac{4}{9}}=\frac{\sqrt[3]{4}}{\sqrt[3]{9}}=\frac{\sqrt[3]{4} \cdot \sqrt[3]{3}}{\sqrt[3]{3^{2}} \cdot \sqrt[3]{3}}=\frac{\sqrt[3]{12}}{\sqrt[3]{3^{3}}}=\frac{\sqrt[3]{12}}{3}$

R. 7 Example 11(a) Simplifying Radical Expressions with Fractions (page 65)

Simplify the expression.

$$
\begin{array}{rlr}
\frac{\sqrt[3]{a^{5} b}}{\sqrt[3]{a^{2} b^{5}}} & =\sqrt[3]{\frac{a^{5} b}{a^{2} b^{5}}}=\sqrt[3]{\frac{a^{3}}{b^{4}}}=\frac{\sqrt[3]{a^{3}}}{\sqrt[3]{b^{4}}} & \text { Quotient rule } \\
& =\frac{a}{b \sqrt[3]{b}}=\frac{a \sqrt[3]{b^{2}}}{b \sqrt[3]{b} \sqrt[3]{b^{2}}} \quad \begin{array}{l}
\text { Rationalize } \\
\text { denominator. }
\end{array} \\
& =\frac{a \sqrt[3]{b^{2}}}{b \sqrt[3]{b^{3}}}=\frac{a \sqrt[3]{b^{2}}}{b \cdot b}=\frac{a \sqrt[3]{b^{2}}}{b^{2}} &
\end{array}
$$

R. 7 Example 11(b) Simplifying Radical Expressions with Fractions (page 65)

Simplify the expression.

$$
\sqrt[4]{\frac{6}{x^{8}}}-\sqrt[4]{\frac{3}{x^{16}}}=\frac{\sqrt[4]{6}}{\sqrt[4]{x^{8}}}-\frac{\sqrt[4]{3}}{\sqrt[4]{x^{16}}}
$$

Quotient rule

$$
=\frac{\sqrt[4]{6}}{x^{2}}-\frac{\sqrt[4]{3}}{x^{4}}
$$

Simplify the denominators.

$$
=\frac{x^{2} \sqrt[4]{6}}{x^{4}}-\frac{\sqrt[4]{3}}{x^{4}}
$$

Write with a common denominator.

$$
=\frac{x^{2} \sqrt[4]{6}-\sqrt[4]{3}}{x^{4}}
$$

Subtract the numerators.

R. 7 Example 12 Rationalizing a Binomial Denominator

 (page 66)
Rationalize the denominator.

$\frac{2}{3+\sqrt{5}}=\frac{2(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}$
Multiply the numerator and denominator by the conjugate of the denominator.

$$
\begin{aligned}
& =\frac{2(3-\sqrt{5})}{3^{2}-(\sqrt{5})^{2}}=\frac{2(3-\sqrt{5})}{9-5} \\
& =\frac{2(3-\sqrt{5})}{4}=\frac{3-\sqrt{5}}{2}
\end{aligned}
$$

