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Math 120 Lessons
[08/29] Algebra Essentials, Numbers- A1l {}
Working with sets {1.1A The real number system p1-2}

Intersection and union of sets

DEFINITION If A and B are sets, the intersection of A with B, denoted A M B, 1s the set
consisting of elements that belong to both A and B. The union of A with B,
denoted A U B, is the set consisting of elements that belong to either A or B,
or both. _]

EXAMPLE 2 ] Finding the Intersection and Union of Sets
Let A = {1,3,5,8}. B = {3,5,7},and C = {2.4,6,8}. Find:

(a) ANB (b) AUB (€) BN(AUC)

Solution  (a) ANB = {1,3,58N{3,5 7} = {3,5}
(b) AUB = {1,3,5.8) U{3,5,7} = {1,3,5,7.8)
(c) BN(AUC) = {3,5.7}N({1.3,5,8 U {2,4,6,8))
= {3,5,7}N{1,2,3,4,5,6,8} = {3,5} .J
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Union
In this definition, 4 and 2 denote two sets, and are represented in the

Venn diagrams by circles. The operations of union and intersection
are demonstrated in the diagrams by means of shading.

The union of 4 and 5,

denoted A ' B, 15 the set
{x|xeAorxe B}

That 15, an element x 15 1n AU E

if it 15 1n the set .4, the set £ or both.
Note that the union of 4 and B
containg both individual sets.
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Intersection

In this definition, A and 2 denote two sets, and are represented in the
Vemn diagrams by circles. The operations of union and intersection
are demonstrated in the diagrams by means of shading.

The i1ntersection of 4 and 5,

denoted A4 — B, 1s the set

{x|xe Aand x € B } A
That 15, an element x 151 A~ B

if it 15 in both 4 and 5. Note that

the intersection of 4 and B 18

contained in each individual set.

SEFEEE Simplify each of the following set expressions, if possible
Set Operations [PV NUT IS A

Solution:
Picture these intervals on a number line. Because they overlap, their union can be

Answer: [ -5,7 ) Recall, the braclket is a closed interval, meaning that the

point is included in the interval. The parenthesis 1s an open
interval, meaning the point itself is not ncluded.

b. [-55]mn[17)
Solution:

We already realized in part a. that these intervals overlap. Their infersection consists
of those parts contained in both, or the overlapping section.

Answer: [ 1,5 ] Be sure to carry forward the same notation. Do not replace
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SEINICNE ¢, (-2,6)~(6,10]

Set Operations
(cont.)

Solution:

Because these intervals are open at the point 6, they do not overlap. They have no

Answer: ©
d (-, 10)U[7, « )
Solution:

These intervals do overlap. Thus, their union ranges from negative infinity to infinity,

Answer: ( — w0, ® )

Real Numbers

Types of Real Numbers

The Natural (or Counting) Numbers: This is the set of numbers
N ={ 1,2,3.4,5, .. } The set is infinite, o in list form we can only write the
first few such numbers.

The Whole Numbers: This is the set of natural numbers with 0 added:
{ 0,1,2,3.4,5, .. }. Again, we can only list the first few members of this set.
No gpecial symbol will be assigned to this set in this course.

The Integers:This is the set of natural numbers, their negatives, and 0. As a list,
this 15 the set Z =<{ n—4,-3,-2,-1,0,1,2,3.,4, ... } Note that the list
continues indefinitely in both directions.

The Rational Numbers: This is the set, with symbol @ for quotient, of ratics of
integers (hence the name). That 1s, any rational number can be written in the form

£ . where p and « are both integers and 4 # 0. When written in decimal form,
o

rational numbers either terminate or repeat a pattern of digits past some point.

The Irrational Numbers: Every real number that 1s not rational is, by defimition,
irrational. In decimal form, irrational numbers are non-terminating and
non-repeating. No special symbol will be assigned to this set in this course.

The Real Numbers: Every set above is a subset of the set of real numbers, which
is denoted R. Every real mumber is either rational or irrational, and no real number

12 both.
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S'CInleCE In the following set identify the a. natural numbers, b. whole numbers, ¢. integers,
ELIGWYGIE d. rational numbers, and e. irrational numbers.
Types of Real

5
Numbers S={-.J4, =0, 2.[2 ,5.87,2./16 , 3n, 8%}
Solution:
a. The natural numbers in Sare 2./ 16 and 8. 2./16 is a natural number since
2.416 =8.

b. The whole numbers in Sare 0,2,/16 and 8"

The integers in S are —,JI .0,2,/16 and 8",

d. The rational numbers are —, 5.87, —JI ,0,2./16 and 8%, Any integer p

G‘\.l h

automatically qualifies as a rational number since it can be written as %

e. The only irrational numbers in 5 are E,J? and 3m. Although well known

now, the irrationality of ./ 2 came as a bit of a surprise to the early Greek
mathematicians who discovered this fact, and the irrationality of @ was not
proven until 1767.
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The following figure shows the relationships among the subsets of R (the real number
system) defined earlier. This figure indicates, for example, that every natural number
is automatically a whole number, and also an integer, and also a rational number.

Integers (7Z)
s R A B ) 8 B R B

e e wammaa wEy e AMsems e ws w4 waaa ssamassaaws

Distributive Property

a-(b+c)=ab+ ac

Zero-Product Property
If ab = 0, then either g = 0 or b = 0 or both equal ().

Zero-Factor Property

Let 4 and £ represent algebraic expressions. If the product of 4 and £ 15 0, then
at least one of 4 and 2 is itself 0. Using the symbol = for "implies"”, we write

AB=0=A4A=0 or 5=0.
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The Real number line

The Real Number Line

It is often convenient and instructive to depict the set of real numbers as a horizontal
line, with each point on the line representing a unique real number and each real
number associated with a unique point on the line. The real number corresponding to
a given point is called the coordinate of that point. Thus, one (and only one) point
on the line represents the number 0, and this point 15 called the origin of the real
number line. Points to the right of the origin represent positive real munmbers, while
points to the left of the origin represent negative real numbers.

Figure 2 is an illustration of the real number line with several points plotted. Note
that two urrational numbers are plotted, though their locations on the line are
necessarily approximations.

Figure 2: The Real Number Line

Graph inequalities

We choose which portion of the real number line to depict and the physical length
that represents one unit as suggested by the numbers that we wish to plot. For
example:

Example 2 : Qg
SELGLGEEER a. -5, -3, and 3
Numbers 5 21

b. 2, E, and T




Solution:
a. If we want to plot the numbers -5, —3, and 3, we might construct the diagram
below.
-3 =3 3
R R e L S E S S R
-5 -4 -3 -3 -1 0 1 2 3 4 5
5 21 ) o
b. If we want to plot the numbers 2, > and ——, we might make the unit interval
longer. 5 21
Z 3 7
-+ttt
-4 -5 -4 -3 -2 -1 0 | 2 3 4 5 6
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Inequality Symbols (Order)

Symbol Meaning
@ < b (read "¢ 1s less than &") @ lies to the left of % on the number
line.
@ < b (read "z is less than or @ lies to the left of & or is equal to A.
equal to &")

£ lies to the right of ¢ on the number
line.

b =a (read "5 1s greater than ")

b= a (read "5 1s greater than or
equal to z")

The two symbols < and = are called strict inequalities, while the symbols < and =

are non—strict inequalities.

£ lies to the right of = or is equal to «.

SEFEEE a. 5 < 9, since 5 lies to the left of 9.
Qualifying

¢. —7>-163, since —7 lies to the right of —163.

d. The statement "5 is greater than —2" can be written 5 > —2.

€. The statement "z is less than or equal to / + " can be written g < 5 +c.
f.  The statement "x is strictly less than y" can be written x < y.

g. The negation of the statement < < & is the statement ¢ > £.

h. Ifz <& and g = &, then it must be the case that o = 5.

MELIENEEY b, 5< 5, since 5 is equal to 5. Note that for every real number @, @ <z anda > a.



Notation Meaning

(a,b) {x|a@a<x<h}, orall real numbers strictly between 2 and 5.

[a &] {x|a<x<£5 1}, orall real numbers between ¢ and &,
including both ¢ and &.

(a. 5] {x|a<x<h}, orall real numbers between ¢ and 5,
including & but not «.

(—o,&) {x|x<5}, orall real numbers less than 2.

[z.0) {x]|x=a}, orall real numbers greater than or equal to .

@ ( EXAMPLE 4 | Graphing Inequalities

(a) On the real number ling, graph all numbers x for which x = 4.
{b) On the real number line, graph all numbers x for which x = 5.

Solution  (a) Sce Figure 8. Notice that we use a left parenthesis to indicate that the number 4

Figure 8 is not part of the graph.
[ R N R S R R {b) See Figure 9. Notice that we use a right bracket to indicate that the number 5
-2-1 0 1 2 3 4 5 6 7 is part of the graph. ._J
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Find Distance on the Real number line {1.1A p3-4}

Absolute Value

Absolute Value and Distance on the Real Number Line

In addition to order, the depiction of the set of real numbers as a line leads to the
notion of distance. Physically, distance 1s a well-understood concept: the distance
between two objects 15 a non-negative number, dependent on a choice of measuring
system, indicating how close the objects are to one another. The mathematical idea
of absolute value gives us a means of defining distance in a mathematical setting,

Absolute Value
The absolute value of a real number «, denoted as | @ |, is defined by:
a 1ifa=0
—a if a<0
The absolute value of a number 1s also referred to as its magnitude; it 1s the
non-negative number corresponding to its distance from the origin.

| a |=

Note that this definition implicitly gives us a system of measurement: 1 and —1 are the
two real numbers which have a magnitude of 1, and so the distance between 0 and 1
(or between —1 and 0) is one unit. Note also that 0 is the only real number whose
absolute value is 0.
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Example 6 : | - ‘ = | n ‘ =1m. Both - and m are @ units firom 0.
Determining
EENE kY P- | 17-3 |=| 3-17 |=14. 17 and 3 are 14 units apart.
Real Number
Line |_7|:i:_1
7 _7 '
d. 7 7
—| = — = 1
7 7
e. —| -5 |=-5. Note: The negative sign outside the absolute value symbol is

not affected by the absolute value. Compare this with the fact that —( -5 ) = 5.

| JT =2 | = .7 — 2. Even without a calculator, we know ./ 7 is larger
than 2 (since 2= .j4 ), s0 .j7 — 2 1s positive and hence

| 47 -2 |=ﬁ—2.

& | ﬁ - 19 ‘ =19 - ,\ﬁ In contrast to the last example, we know

N'{? — 19 is negative, so its absolute value ig 19 — ﬁ
The previous examples illustrate some of the basic properties of absolute value. The
list of properties below can all be derived from the definition of absolute value.
Properties of Absolute Values
For all real numbers @ and 5,
1. | a |=0

2. | - |=[a]

4. | ab [=|a || & |
a |_lea|
5. — | = ,b#0
5 |-
6. | a+b |<| a |+| & | (This is called the triangle inequality, as it is a

reflection of the fact that one side of a triangle 1s never longer than the sum of
the other two sides.)
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The following example also illustrates some of the properties of absolute values.

SCEWM a. | (-3)(5) |=| -15 |=15=| -3 || 5 |
Finding

I g b 1= -3+4 || -3 [+]| 4 [=7.
c. 7=|-3-4 |<| -3 |+| -4 |=7

-3 | -3 | 3

o | =2 |- -2

‘ 7 ‘ |7 7

If P and () are two points on a real number line with coordinates a and b,
respectively, the distance between P and @, denoted by d( P, Q), is

| d(P,Q) = |b - 4 |

_J

Since |b — .:J| = |a — b, it follows that d( P, Q) = d(Q. P).

Finding Distance on a Number Line

Let P, (. and R be points on a real number line with coordinates =35, 7, and =3,
respectively. Find the distance

{a) between FPand ©Q {b) between O and R
See Figure 11,

Figure 11 A a

|-|'—- a 5 S——
[=——d(a R 3-7 0 —
(a) d(P,Q)=|7—-(-5) =12|=
(b)Y d(Q. R} =|-3 -7 =|-10 = 10 ._j

s JOW WoPK rrosLEM 47



Distance on the Real Number Line

Given two real mumbers ¢ and #, the distance between them is defined to be
| @—# |. Inparticular, the distance betweenz and0is| @—0 |,orjust| a |.

Of course, distance should be symmetric. That is, the distance from « to & should be
the same as the distance firom 4 to 2. Also, no mention was made in the above
definition of which of the two numbers ¢ and & 1s smaller, and our intuition suggests
that this is inunaterial as far as distance is concerned. These two concerns are really
the same, and happily (and not by chance) our mathematical definition of distance
coincides with our intuition and is indeed symmetric.

Given two distinct real numbers ¢ and 4, exactly one of the two differences ¢ — 4
and ~ — ¢ will be negative, and since

b—a=-(a-5b),
the definition of absolute value makes it clear that these two differences have the
same magnitude. That is,

| a-& |=| b-a |
A few examples should make the above points clear.

Evaluate Algebraic expressions {1.1B Arithmetic of Algebraic Expressions}

RSB 2. Consider the following expression:
Components

and 275 (23 +y)+3\y =7 (x+1?)
Terminology

Algebraic Expressions 275 (23 +y) +3\y =7 (x+)?)
Terms 2733 (23 +y) 3y —7 (x+3?)
Factors 27, v, (2x*+y) 3,Vy =7 (x+)2)
Coefficient (of term) 27 3 -7
Variable Factor ( of term ) Y (2x*+y) Vy (x+)%)

The following table illustrates the elements of this expression and their names.

Note that =27, 3, and —7 are simultancously factors and coefficients. Also,

both (2x* + y ) and (x + y? ) are made up of two terms, but they are not terms
of the original expression, just terms of those factors.

Page 12 of 36
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SCINCICME b. Evaluate the following expression for x =4 and y =-3:
Components
and

LG 11\ Solution:
(cont.)

227-3(y-x)

Replace all x's with 4 's, and replace all v 's with —3 's:

253 _ (y—x)=2( 43) —-3(-3-4) Performthe correct calculations.
=2(64)-3(-7) Calculate and simplify.
=128 +21

Answer: =149

Field Properties

In this table, @, #, and ¢ represent arbitrary real numbers. The first five properties

apply to addition and multiplication, while the last combines the two.
Name of Property  Additive Version  Multiplicative Version

Closure @+b 1sareal number  abisareal number
Commutative at+th=b+a ah = ha
Associative a+(bt+tc)=(atb)+c a( bc)=(ab)c

Identity at+0=0+ta=aq a-1=1-a=a

1
Inverse a+(-z)=0 a —=1(fora#0)
a

Distributive alb+tc)=ab+ac
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Order of Operations

1. Ifthe expression 1s a fraction, simplify the numerator and denominator
individually, according to the guidelines in the following steps.

2. Parentheses, braces, and brackets are all used as grouping symbols.
Simplify expressions within each set of grouping symbols, if they are present,
working from the innermost outward.

Simplify all powers (exponents) and roots.

4. Perform all multiplications and divisions in the expression in the order they
occur, working from left to right.

5. Perform all additions and subtractions in the expression in the order they
occur, working from left to right.

Determine the Domain of a variable

Touch on later



Use the laws of Exponents {1.2a Properties of exponents}

Properties of Exponents

Throughout this table, @ and b may be taken to represent constants, variables, or more complicated
algebraic expressions. The letters n and m represent integers.

Property Example
1. a-at=a"" (=3)-(=3)1=(=3)P*"D=(_3)=9
2 i:af?—m 7_9:79‘10—7‘1

a” 710

1 L 1 1 S
3 a —z 5 —h—z—g and x —xj

4. (&Y' =a™

8.

that a® = 1 for every a # 0.

Properties of Exponents, cont.

Property Example
(ab Y =a'b" (7x )’ = 7% =343x" and
( 20 f= (-2 (P =4
B (e
() s
3= (3d)2 -2
(g)”_ﬁ <i> _ &
b o 4 125
a _ ¥ 3__2_“_£
b a 2% 32 9

In the above table, it is assumed that every expression is defined. That is, if an exponent is 0, then the base is
non-zero, and if an expression appears in the denominator of a fraction, then that expression is non-zero. Remember

Simplify the following expressions by using the properties of exponents. Write the final answers with

only positive exponents.

a. (14x" — 6x° + 9

(_4~r'§.}:— 2 )—?
(16x™H (xy )™

1_-3
b. (HHs :
.?C'S
d. (9%’ (daty) !
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Incorrect Statements Corrected Statements
3. x6= xI8 x3. x6= x5
23 29=42 2% 29 =
(>3 +6p) - -L;- + .0 (x?+ 6y) | 4= L IS
x7 Gy x? + 6y
(52 =:5x" )" = 25x°

Evaluate square roots {1.2c Properties of Radicals}

n™ Roots and Radical Notation

Case 1: nis an even natural number. If @is a non-negative real number and » is an even natural
number, %/ a is the non-negative real number b with the property that 5” = a. That is

Ha =be a=b" Notethat,f/:n=aand hat =a

Case 2: nis an odd natural number. If @ is any real number and » is an odd natural number, 7/ a
is the real number b (whose sign will be the same as the sign of a) with the property that b* = a.

Again, fa =boa=b", 2 a —amd Y@ =a

The expression */ a expresses the n™* root of a in radical notation. The natural number # is called
the index, a is the radicand, and I is called a radical sign. By convention AZ/_ is usually
simply written as ./ .




Simplified Radical Form

A radical expression is in simplified form when:

1.

The radicand contains no factor with an exponent greater than or equal to the index of the
radical.

The radicand contains no fractions.

The denominator, if there is one, contains no radical.

The greatest common factor of the index and any exponents occurring in the radicand is 1.

That is, the index and any exponents in the radicand have no common factor other than 1.

Page 17 of 36
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Properties of Radicals

Throughout the following table, « and » may be taken to represent constants,
variables, or more complicated algebraic experessions. the letters » and m represent

Property Example
1. N a” =a ifnisodd NCE5P ==5,37=3
2. Y a" =|a|ifniseven N 6= |-6|=6

¥ Nap =Aa .\ \3f3x(’y2= \7§ -\3/x3-\3/x3 A 2

4 a N a 5% 2 Vx4 [2a]]
b M | — = =

B g 6 16 2
s %7 ="w ez =3/ Ve = Vea =2

natural numbers. It is assumed that all expressions are defined and are real numbers.

Simplify the following radical expressions:

5
a.’| 24 &b’ b. 7 108 x ¥* C.hl —

Solution:

Rationalizing the denominator using a Conjugate

Enter the factor that will rationalize the denominator for the expressions below.

2+ /10
6-./2

a. conjugate =

Simplify the following radical expressions:
3 ¥y

a4 — —_—

3 32x A/? + A 2y
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Ag an aside, there are occasions when rationalizing the numerator is desirable. For instance, some
problems in Calculus (which the author encourages all college students to take as a
consciousness-raising experience!) are much easier to solve after rationalizing the numerator of a
given fraction. This is accomplished by the same method, as seen in the next example.

N1 -A2
e

Rationalize the numerator of the fraction

[08/29] Polynomials Factoring- A3 {1.3 Polynomials and Factoring}

Recognize Monomials

1 Recognize Monomials

DEFINITION A monomial in one variable is the product of a constant and a variable raised
to a nonnegative integer power. A monomial is of the form

NT The nonnegative integers

&
nteaers 0, 1,2, 3, ... ] ax

where g is a constant, x is a variable, and k = 0 is an integer. The constant a is
called the coefficient of the monomial. If a # 0, then k is the degree of the
monomial. _J

[ EXAMPLE 1 ] Examples of Monomials

Monomial Coefficient Degree

(a) 6x° 6 2

(b) —V2x* -\V2 3

(c) 3 3 0 Sinced =31 =30, x # 0
(d) —5x =5 1 Since —Bx = —Bx

(e)

x! 1 4 Singe ¥t = 1+x" .J

Now let’s look at some expressions that are not monomials.

[ EXAMPLE 2 ] Examples of Nonmonomial Expressions

12 - . . . . .
{a) 3x"/7is not a monomial, since the exponent of the variable x is 3 and S isnot a
nonnegative integer. -
_7 . . . . . .
(b) 4x 7 is not a monomial, since the exponent of the variable x is —3 and —3 is not
a nonnegative integer. J

s~ NOW WOrK rroeLEM 11
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Recognize Polynomials

DEFINITION A polynomial in one variable is an algebraic expression of the form
ax" + a,_ X"+ ax +oag (1)
In Words .
A polyromial is  sum of where a,,a,-1,...,ay,a; are constants,* called the coefficients of the
monhormials. polynomial, n = 0 is an integer, and x is a variable. If @, # 0, it is the leading
coefficient, and n 1s the degree of the polynomial. _J

The monomials that make up a polynomial are called its terms. If all the
coellicients are 0, the polynomial is called the zero polynomial, which has no degree.

Polynomials are usually written in standard form, beginning with the nonzero
term of highest degree and continuing with terms in descending order according to
degree. Il a power of x is missing, it 1s because its coellicient is zero.

[ EXAMPLE 3 ] Examples of Polynomials

Polynomial Coefficients Degree

—8x" +4x? + 6x + 2 —8,4.6,2 3

32— 5 =322 + 0+ x + (—5) 3,0, -5 2

§—2x+x =1-x"+(-2)x+8 1,-2,8 2

S+ V2 =5¢ + V2 5,V2 1

3=3-1=3-%" 3 0

0 0 No degree .J

Add or subtract the polynomials, as indicated.
a. ( 7x? = 2xp + 3y ) _ [ 23 2wy + 5y )

b. ( 12ab’c + 8b°c® - 3ac® — 10 ) + (4 + Sac® — ab’c )

Ans

The first step 1z to identify like terms, and group these together. Note: remember to distribute the minus sign over
all the terms in the second polynomial. The like terms are then combined by nsing the distributive property.

Ans
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Know formulas for Special Products

FOIL
First

'y

(a+ b)c+d)=ac+ ad+ bc + bd

L4

Inner

Outer

Difference of Two Squares

(x —a)x+a)=x"—-d (2)

Squares of Binomials, or Perfect Squares

(x + a}z =xX+2ax+d (3a)
(x — a}z =xX-2ax+d (3b)

Cubes of Binomials, or Perfect Cubes

(x +a)=x +3axr +3°x + @ (4a)
(x —a))=x —3ax’ +3a°x — @ (4b)

Difference of Two Cubes

(x—a)(x*+tax+ad)=x-d (5)
Sum of Two Cubes
(x+a)x* —ax+a)=x"+d (6)

Multiply the polvnomials, as indicated.
a. (4ac - 6ab )| 3ac+ 2ab*—abe ] b, (xy+2y ) 2y + 5y)



1

Special Product Formulas

. (A—B)(A+B)=A"_ B

2. (A+B) =4%+24B + B

3
4

(A—B)Y=4£_24B+ B

(A+BY =4%+34°B + 34B* + B

(A-B) =4 34°B+ 34R:_ B3

Divide Polynomials Using Long Division

( EXAMPLE 5 ] Dividing Two Integers

Solution

Divide 842 by 15.

56  « Cuctient
Divisor —  15)842  « Dividend
E «— 515 [subtract
92
90 S (2ubtract
_2 — T i ¥
o 842 — 56 4+ 2

15 157 .J

In the long division process detailed in Example 5, the number 15 is called the
divisor, the number 842 is called the dividend, the number 56 is called the quotient,
and the number 2 is called the remainder.

To check the answer obtained in a division problem, multiply the quotient by
the divisor and add the remainder. The answer should be the dividend.

(Quotient)(Divisor} + Remainder = Dividend

For example, we can check the results obtained in Example 5 as follows:
(56)(15) + 2 = 840 + 2 = 842
To divide two polynomials, we first must write each polynomial in standard

form. The process then follows a pattern similar to that of Example 5. The next
cxample illustrates the procedure,
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[ EXAMPLE 6 ] Dividing Two Polynomials

Find the quotient and the remainder when

30+ 47 + x + 7 isdividedby ¥+ 1

Solution  Each polynomial is in standard form. The dividend is 3x* + 4x” + x + 7, and the
divisor is x* + 1.

REMEMBER A polynorrial is in standard  STEP 13 Divide the leading term of the dividend, 357, by the leading term of the

form when its terms are written according divisor, ¥, Enter the result, 3x, over the term 3x7°, as follows:
to descending degrees. ]
3x

PB4t x4+ 7

StEP 2: Multiply 3x by x° + 1 and enter the result below the dividend.

Jx
F 130 A+ x4 T
3t + 3x — By (0 + 1) = B® + Bx

¢ Lerm unssr The x

Step 3: Subtract and bring down the remaining terms.

3x
C B8 A+ x+ T
3 + 3x : the signs an: |
4yt =2y + 7 w” and the
STEP 4: Repeat Steps 1-3 using 4x” — 2x + 7 as the dividend.
Jr +4
L1335 +42 4+ x+7
3x + 3x
4x — 2x + 7 I Divide 4x° by x° Lo get -
4x° + 4 — Multiply © + 1by 4

—2x + 3
Since x” does not divide —2.x evenly (that is, the result is not a monomial),
the process ends. The quotient is 3x + 4, and the remainderis —2x + 3.

/Check: (Quaotient)(Divisor) + Remainder

= (3x + 4)(x* + 1) + (—2x + 3)

=37 +3x + 47+ 4+ {(—2x + 3}

= 3" + 4 + x + 7 = Dividend

Then

XA’ +x+ —2x +
3x 4x v ?=3x—4+ %r 3

X+ X+ ._J
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Factor Polynomials

] Identifying Common Monomial Factors

Common
Monomial

Polynomial Factor

2x + 4 2

Jx—6 3

20 —4x+8 2

S8x — 12 4

X+ X

e e X

67 + 9x 3x

Remaining
Factor

x+ 2
xr—2
-2y +4
2x — 3

x + 1
x—3

2x+ 3

Factored Form

2x 44 =2x +2)
3x — 6= 3(x - 2)

2% —dx + 8 =2(x* — 2x + 4)
S8x — 12 =4(2x — 3)
PHx=xx+1)

=3t = e - 3)

67 + 9x = 3x(2x + 3)

)

Notice that, once all common monomial factors have been removed from a
polvnomial, the remaining factor is cither a prime polynomial of degree 1 or a
polvnomial of degree 2 or higher. (Do vou see why?)

The list of special products (2) through (6) given carlier provides a list of
factoring formulas when the equations are read from right to left. For example,
cquation (2) states that if the polynomial is the difference of two squares, x* — a°, it
can be factored into {(x — a)(x + a). The following example illustrates several

factoring techniques.

Method 1: Greatest Common Factor. Factoring out those factors common to all the terms in an
expression is the easiest factoring method to apply. and should be done first if possible. The greatest
common factor (GCF) among all the terms i3 simply the prodnct of all the factors common to each.
For instance. 2x is a factor common to all the terms in the polynomial 12¢” — 4x* + &’=° but is not the
greatest common factor. The Greatest Common Factor method 13 a matter of applying the distributive
propexty to "un-distribute” the greatest common factor.

Use the Greatest Comunon Factor method to factor the following polynomials.
a 8a°b— dab+6a’l’ b. —3Eh.'2.1- +5¢ e 4 ( v+ xy }+ 3 {_‘,2 + xy )

Method 2: Factoring by Grouping. Many polynomials have a GCF of 1, and the first factoring
method 12 therefore not directly applicable. But if the terms of the polynomial are grouped mn a
suitable way. the GCF method may apply to each group, and a commen factor might subsequently be
found among the groups. Factoring by Grouping is the name given (o this process, and if i unportant
to realize that thiz iz a trial and error process. Your first attempt at grouping and factoring may not
succeed, and you may have to ry several different ways of grouping the terms.

Ugze the Factor by Grouping method to factor the following polynomials.
a. yz — 2y=2 + 12y2% — 6y=? b. 3ab® - 4a - 2a°b + 6b
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Caution!

Cne common errar in factoring is to stop after gronps within the original polynomial have been
factored. For instance, while we have done some factoring to achieve the expression
y=(1—63)— 2y=* (1 — 65 ) in Example 5a, this is not in factored form. An expression is only
factored if it 1s written as a product of two or more factors. The expression

¥z (1—6z)— 2v=*( 1 — 6z ) is a sum of two smaller expressions.

Method 3: Factoring, Special Binomials. Three types of binomials can always be factored by
following the patterns outlined below. %ou should verify the truth of the patterns by multiplyving out
the products on the right-hand side of each one.

In the following, 4 and B represent algebraic expressions.
Difference of Two Squares: . 4° - B°=(A— B} A+ B).
Difference of Two Cubes. 4" — B = (4B ]E A+ AB+ B° }
Sum of Two Cubes: 4°+B*=(A4+B){ 4*_ AB + B’ :]

Factor the following binoimials
a 25a" _ 4b° b. 512¢%27 — 8xfy?

Method 4: Factoring Trinomials. In factoring a trinemial of the form av® + bx + ¢, the goal is to
find two binomials px + g and »x + 5 such that
a’+hx+e=(pr+g)rm+s)

Since ( px+q ) rx+5)=pr* +( ps + gr ) + g5, we seek p, g, rand s such that a = pr, b = ps +qr
and ¢ = gu:

ax® + bx+c=pra® +( ps+qr )+ gs
R R

i1 Rﬂ_} c

In general. this may require much trial and error, but the following gnidelines will help.
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Complete the square

Completing the Square

Identify the coefficient of the first-degree term. Multiply this coefficient by 3

and then square the result. That is, determine the value of b in x> + bx and

1
compute (;b) .

Completing the Square

Determine the number that must be added to each expression to complete the
square. Then factor the expression.

Start Add Result Factored Form
1 2
¥ + 8y (E-B)—]E ¥+ 8y + 16 (v + 47
1 2
o+ 12x (E-lz) =36 ¥+ 12x + 36 x + &)
1 2
a® — 20a (E-:—zol) = 100 a® — 20a + 100 fa — 100
1 j 25 25 ( s)'—’
2NN —_ = === F 4+ — I
p° — 5p (2 { 5‘.1‘ - pt—5p 2 P 2,

[08/31] Rational Expressions-A5{ 1.8a Rational expressions and equations}

Rational Expressions
P
A rational expression is an expression that can be written as a ratio of two polynomials 5 - Of

course, such a fraction is undefined for any value(s) of the variable(s) for which O =0. A given
rational expression is simplified or reduced when P and O contain no common factors (other than 1
and —1).

To simplify rational expressions, we factor the polynomials in the numnerator and denominator
completely and then cancel any common factors. It is important to remember, however, that the
sunplified rational expression may be defined for values of the variable (or variables) that the original
(unsimplified) expression is not, and the two versions are equal only where they are both defined.
That is, if A, B and C represent algebraic expressions,

a4 Uy where B# 0 and C # 0
e = p Only where an .
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Reduce a Rational Expression to Lowest Terms

r+27 ¥4+ Ty — 18
da. 2— b
x°+ 3x 2—x
Caution!

Remember that only common factors can be cancelled! A very common error is to think that
commeon terms from the numerator and denominator can be cancelled. For instance, the statement

X+4 4

Sy T 18 incorrect. Itis not possible to factor x + 4 at all, and the x that appears m the
X :

numnerator is nert a factor that can be cancelled with one of the x's in the denominator. The
x+4
_1‘2

expression is already simplified as far as possible.

Multiply and Divide Rational Expressions
Multiply or divide the following rational expressions, as indicated.
x*+3¢x—28 x-5 ¥+x-20 x°—8r+16
x+3 . v +8¢c+7 b. 4x - 16x°

A complex rational expression is a fraction in which the numerator or denominator (or both)
contains at least one rational expression. Complex rational expressions can always be rewritten as
simple rational expressions. One way to do this is to simplify the numerator and denominator
individually and then divide the numerator by the denominator as in Example 3b. Another way,
which is frequently faster, is to multiply the numerator and denominator by the LCD of all the

fractions that make up the complex rational expression. This method will be illustrated in the next
two examples.

Add and Subtract Rational Expressions

Add or subtract the following rational expressions, as mdicated.
3x — 2 2y x+4 ¥—x-6 4+ 3y — 20

¥ 6r+8  x°— 16 T xtS 0 2_3w-10 © _ 95

a.
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Use the least common Multiple Method

Use the Least Common Multiple Method

If the denominators of two rational expressions to be added (or subtracted) have
common factors, we usually do not use the general rules given by equations (5a) and
(5b). Just as with fractions, we apply the least common multiple (LCM) method. The
LCM method uses the polynomial of least degree that has each denominator
polynomial as a factor.

The LCM Method for Adding or Subtracting Rational Expressions
The Least Common Multiple (LCM) Method requires four steps:

Step 1: Factor completely the polynomial in the denominator of each rational
expression.

Step 2: The LCM of the denominator is the product of each of these factors
raised to a power equal to the greatest number of times that the factor
occurs 1n the polynomials.

Step 3: Write each rational expression using the LCM as the common
denominator.

Ster 4: Add or subtract the rational expressions using equation (4).
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Simplify Complex Rational expressions

Simplify the following complex rational expressions.

[08/31] Solving Linear and Quadratic Equations —A6
{1.5a linear equations in one variable, 1.7a Quadratic equations in one variable}

Linear Equations in One Variable

A linear equation in one variable, say the variable x, is an equation that can be transformed into
the form ax + b = 0, where a and b are real numbers and a # 0. Such equations are also called
first-degree equations, as x appears to the first power.

/ 3
a. S5(x—2)+3xr=1-4 x+ —
\ 4 )

".

b. Ssx_8=5(x-2)

Solve Equations by Factoring

Zero-Factor Property
Let A and B represent algebraic expressions. If the product of 4 and B is 0, then at least one of
A and B isitself 0. That is,

AB=0=>A4A=00rB=0
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¥ = 4x
¥ —dx =0
JC(XE - 4) =0 Factor.
x(x = 2)x + 2) =0  Factor again.
x=0 or x—2=0 or x+2=0 Applythe Zero-Froduct Property.
x =10 or x =2 or x = —2 Solve for x.

The solution set is {—2,0,2}.

v Check: x=-2: (—2)®= —8and4(—2) = -8 2 iz a colution.
x =0 0 =0and4-0 =0 0 is a solution.
x =2 23 =8and4-2 =8 4 is a solution.

(b) Group the terms of x> — x* — 4x + 4 = 0 as follows:
(= x%) = (4x — 4) =0
Factor out x* from the first grouping and 4 from the second.
Xx—1)—4x—-1)=0
This reveals the common factor (x — 1), so we have

(¥ —4)(x—1)=0

[:JC - 2}()‘: + 2)(12 - 1} =0 Factor again.
x—2=0 or x+2=0 x—-1=10 Apply the Lero-Froduct Froperty.
x=2 x = =2 x=1 Solve for x.

The solution setis {—2,1,2}.

Solve Equations Involving Absolute Value
Solving an Equation Involving Absolute Value

Solve the equation: |x + 4| = 13

There are two possibilities.

x+4=13 or x+ 4= —13

x=9 or x = —17

The solution setis {—17,9}.
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Solve a Quadratic Equation by Factoring

Quadratic Equations
A gquadratic equation in one variable, say the variable x, is an equation that can be transformed
into the form ax® + bx + ¢ = 0, where a, b, and ¢ are real numbers and a £ 0. Such equations are

also called second-degree equations, as x appears to the second power. The name quadratic
comes from the Latin word quadrus, meaning "square".

Solve the following quadratic equations by factoring.

11x 4
a. 12+ T’: =— b. s2+25=10s c. 42 +28¢=0

Solve the following quadratic equations by taking square roots.

If x* = pand p = 0, thenx = Vporx = —Vp. (3)

a. (2x+5)=12
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Solve a Quadratic Equation by Completing the Square [find better examples***]

Solving a Quadratic Equation by Completing the Square
Solve by completing the square: 2x> — 8x — 5 =0
First, rewrite the equation as follows:

2x> —8x —5=0

2x* — 8x =5

Next, divide both sides by 2 so that the coefficient of x* is 1. (This enables us to
complete the square at the next step.)

5
X —dx ==
2
Finally, complete the square by adding [ ] = 4 to both sides.
2
C—dx + 4= +
X X 2
13
— 7y = =
(I "'} 2
13
x —2 =% E e the Square Root Method
V26 5 Vis Vis V2 Ve
x — 2 = — — — — :
2 V2 2 V2 V2 2
V126
=24 -
) 2

\/ 2 \ 2
The solution set is {2 — T6 2+ —6} .J
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Solve a Quadratic Equation Using the Quadratic Formula

The Quadratic Formula

—_b %,/ b*— dac
2a )

Note that the equation has a single solution if b* — 4ac = 0 and two complex solutions that are
conjugate of one another if b% — 4ac < 0.

The solutions of the equation ax® + bx + ¢ =0 are x =

Solving a Quadratic Equation Using the Quadratic Formula

Use the quadratic formula to find the real solutions, if any, of the equation
3¢ = 5x+1=0

The equation is in standard form, so we compare it to ax> + bx + ¢ = 0to find a,
b.and c.

3¢ —5x+1=0
ax* + bx +c¢ =0

With a = 3.b = =5, and ¢ = 1, evaluate the discriminant b* — 4ac.
b* — dac = (—5)° — 4(3)(1) =25 — 12 =13
Since b’ — 4ac > 0, there are two real solutions, which can be found using the

quadratic formula.

C—bE\/P—dac  —(-5)+ V13 5+ \13
t T 2a N 2(3) 6

The solution set 1s {

5 - V13 5+V’E}
6 6 '
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Solve the following quadratic equations by using the quadratic formula.

a. 6y°—5y=1

[09/07]Complex Numbers-A7{1.4 Complex number system}

The Imaginary Unit i
The imaginary unit i is defined as 7= ./ —1 . In other words, 7 has the property that its square is —1:

I =—

Square Roots of Negative Numbers

If a is a positive real number, ./ —a =i,/ a . Note that by this definition, and by a logical
2 2
extension of exponentiation, ( i a ) = 1-2( A a ) =—a.

a. [-25 =i,/25 =i(5)= 5i. Asiscustomary, we write a constant such as 5 before letters in
algebraic expressions, even if, as in this case, the letter is not a variable. Remember that 7 has a
fixed meaning: iis the square root of —1.

b. =12 =i 12 = i( 2.3 ) = 2i -\.f? . As 1s customary, again we write the radical factor last.
2
You should verify that ( 2iA 3 ) is indeed —12.
c. i =FPFi=(-1)-1)-1)i)= —i and

2 =FPPPP=(-1)-1)-=1)=1)= 1. The simple fact that i* = —1 allows us, by our
extension of exponentiation, to determine ;" for any natural number 7.

d. (-i)*> =(-1)*#=#= —1. This observation shows that —i also has the property that its square
s —1.
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Add, subtract, multiply and divide complex numbers

Adding and Subtracting Complex Numbers

(a) 3+5i)+(-2+3i)=[3+(-2)]+(5+3)i=1+8i
by (6+4) - 3+6i)=(6-3)+(4-6)i=3+(-2)i=3-2

Multiplying Complex Numbers
(5+3i)-(2+7i) =5-(2+7i) + 3i(2 + Ti)
[

Distributive Froperty

10 + 35 + 6i + 2142

3 .

Distributive Froy

operty
=10 + 41i + 21(—1)

=_—ll + 41 .J

Based on the procedure of Example 2, we define the product of two complex
numbers as follows:

Sunplify the following complex nunber expressions.

a. (5+6i)+(-7+3i) b. (=3+3i)—(-5+3i)
c. (6+3i)(-5+4i) d. (7-2i)

Simplify the following quotients.

3+ 4i 1
a. - : i
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Solve quadratic equations in the complex number system.

b. F+8+20=0



