1. True or false: If $y=\log _{a}(x)$ then $x=a^{y}$.
2. The graph of every $\operatorname{logarithmic~function~} y=\log _{a}(x), a \neq 1$ passes through three points:
\qquad and \qquad
3. If the graph of a logarithmic function $y=\log _{a}(x)$ is increasing then its base must be:
4. Determine the domain of the following functions. Is the function defined at $x=-3$? Is the function defined at $x=3$?
(a) $f(x)=\log \left(x^{2}\right)$.
(c) $h(x)=\sqrt{\ln (x)}$
(b) $g(x)=\ln \left(\frac{x}{2}-3\right)$
(d) $k(x)=\log _{3}\left(\frac{x-3}{x^{2}}\right)$
5. Determine wether the statement is true or false.
(a) $\log _{6}\left(5 x^{2}\right)=2 \log _{6}(5 x)$
(c) $\ln (x+2)-\ln (5 x)=\frac{\ln (x+2)}{\ln (5 x)}$
(b) $\frac{\ln (8)}{\ln (4)}=2$
(d) If $\log _{9}(M)=\frac{\log _{6}(4)}{\log _{6}(9)}$ then $M=4$.
6. Use properties of logarithms to simplify and/or find the exact value of the expression.
(a) $e^{\log _{e^{2}} 64}$
(c) $7^{\log _{7}(e)}$
(b) $\log _{3}\left(3 z^{3}\right)$
(d) $\ln \left(\frac{x}{e}\right)$
7. Write the expression as a sum and/or difference of logarithms. Express powers as factors.

$$
\ln \left[\frac{x^{2}-x-20}{(x+7)^{2}}\right]^{\frac{1}{4}}
$$

8. Write the expression as a single logarithm.
(a) $2 \log _{5}(\sqrt{3 x-8})-\log _{5}\left(\frac{4}{x}\right)+\log _{5}(4)$
(b) $\log _{4}\left(x^{2}-4\right)-5 \log _{4}(x+2)$
9. Solve the following equations:
(a) $2 \cdot 10^{4-x}=10$
(d) $\log _{3}\left(x^{2}+1\right)=4$
(b) $e^{6 x}=22$
(e) $\ln (x-1)+\ln (x+2)=0$
(c) $\log _{2}(8 x+6)=2$
(f) $\log _{3}\left(x^{2}+4\right)=4$
10. Use transformations to match each graph with an equation.
(a) $y=\log _{5}(1-x)$
(c) $\log _{2}(x-1)$
(b) $y=-\log _{3}(x)$
(d) $\log _{4}(x)$

