HW 11

- True or false: If y = log_a(x) then x = a^y.
- 2. The graph of every logarithmic function $y = \log_a(x), a \neq 1$ passes through three points: _____ and __
- 3. If the graph of a logarithmic function $y = \log_a(x)$ is increasing then its base must be:
- 4. Determine the domain of the following functions. Is the function defined at x = -3? Is the function defined at x = 3?
 - (a) $f(x) = \log(x^2)$.

(c) $h(x) = \sqrt{\ln(x)}$

(b) $q(x) = \ln(\frac{x}{2} - 3)$

- (d) $k(x) = \log_2(\frac{x-3}{x^2})$
- Determine wether the statement is true or false.
 - (a) $\log_{6}(5x^{2}) = 2\log_{6}(5x)$

(c) $\ln(x+2) - \ln(5x) = \frac{\ln(x+2)}{\ln(5x)}$

(b) $\frac{\ln(8)}{\ln(4)} = 2$

- (d) If $\log_9(M) = \frac{\log_6(4)}{\log_6(9)}$ then M = 4.
- Use properties of logarithms to simplify and/or find the exact value of the expression.
 - (a) $e^{\log_{e^2} 64}$

(c) 7^{log}₇(e)

(b) $\log_3(3z^3)$

- (d) $\ln(\frac{x}{a})$
- Write the expression as a sum and/or difference of logarithms. Express powers as factors.

$$\ln\left[\frac{x^2 - x - 20}{(x+7)^2}\right]^{\frac{1}{4}}$$

- Write the expression as a single logarithm.
 - (a) $2\log_5(\sqrt{3x-8}) \log_5(\frac{4}{5}) + \log_5(4)$ (b) $\log_4(x^2-4) 5\log_4(x+2)$
- Solve the following equations:
- (a) $2 \cdot 10^{4-x} = 10$

(d) $\log_2(x^2+1)=4$

(b) $e^{6x} = 22$

(e) $\ln(x-1) + \ln(x+2) = 0$

(c) $\log_2(8x + 6) = 2$

(f) $\log_2(x^2+4)=4$

10. Use transformations to match each graph with an equation.

(2)

(4)

(a) $y = \log_5(1 - x)$

(c) $\log_2(x-1)$

(b) $y = -\log_3(x)$

(d) $\log_4(x)$

(1)

(3)

