## HW 09

- 1. True or false:  $(f \circ g)(x) = f(x) \cdot g(x)$ .
- 2. True or false: The graph of  $y=2^x$  and  $y=(\frac{1}{2})^x$  are symmetric with respect to the y-axis.
- 3. True or false: For the equation  $y = a^x$   $(a > 0, a \neq 0), y \to \infty$  as  $x \to \infty$ .
- 4. For the exponential function  $f(x) = a^x$  the domain is \_\_\_\_\_ and the range is
- 5. The exponential function  $f(x) = a^x$  is increasing when \_\_\_\_\_ and is decreasing when \_\_\_\_\_
- 6. If  $f^{-1}$  denotes the inverse of a function f, then the graphs of f and  $f^{-1}$  are symmetric with respect to which line?
- 7. Given  $f(x) = x^2 + 1$  and  $g(x) = \sqrt{x 6}$ , find a formula for  $f \circ g(x)$  and  $g \circ f(x)$ . Find the domain of  $f \circ g(x)$  and  $g \circ f(x)$ .
- Find the inverse of the given one to one functions below. State the domain and range of the inverse function.

(a) 
$$f(x) = \frac{2x+4}{x+3}$$
 (b)  $g(x) = \sqrt{x+9}$  (c)  $h(x) = x^3 - 1$  (d)  $k(x) = \frac{x^2 - 5}{4x^2}$ 

- 9. If  $g(x) = e^{3x}$ , and  $h(x) = x^4$ , find an equatin for  $(g \circ h)(x)$  and  $(h \circ g)(x)$ , and the doman of each function.
- 10. Determine whether the given function is linear, exponential or neither. If the data is linear find a linear function that models the data and for those that are exponential find an exponential function that models the data.

| (a) | x    | -1            | 0 | 1  | 2   | 3   |
|-----|------|---------------|---|----|-----|-----|
|     | f(x) | $\frac{6}{5}$ | 6 | 30 | 150 | 750 |

 Use transformations to graph the following functions. Then determine the domain, range and identify any asymptotes.

(a) 
$$f(x) = 5 - e^x$$

(b) 
$$g(x) = 1 + 2^{x-1}$$

12. Graph the function  $f(x) = \begin{cases} e^{-(x+3)}, & x < -3 \\ e^{(x+3)}, & x \ge -3 \end{cases}$ . Based on the graph find the domain and the range and then find any intercept.