- 1. Find functions f and g such that $(f \circ g)(x) = (x+1)^2$
- The graph of a piecewise function is given. Write a definition for the function that best describes this graph.

- Find the function that is finally graphed after the following transformations are applied to the graph of $y = \sqrt{x}$ in the order listed.
 - (a) Shift up 2 units

- (b) Reflect about the x-axis
- Decide wether the following statement is true or false.
 - (a) To obtain the graph of $f(x) = x^3 + 4$ shift the graph of $y = x^3$ vertically up 4 units.
 - (b) To obtain the graph of f(x) = |x 3| shift the graph of y = |x| horizontally to the right 3 units.
 - (c) The graph of y = -f(x) is the reflection about the x-axis of the graph of y = f(x).
- 5. Find the domain of f(x) and evaluate the following for f(x) if $f(x) = \begin{cases} |x|, & x \le -2 \\ x+2, & -2 < x < 4, \\ x^3, & x > 4 \end{cases}$
 - (a) f(5)
- (b) f(-2) (c) f(0) (d) f(-3)

For each function listed below:

(a)
$$h(x) = (x-1)^3 - 4$$

(c)
$$f(x) = |x - 1|$$

(b)
$$g(x) = x^2 + 3$$

(d)
$$j(x) = 1 - \sqrt{x+5}$$

(a) Identify the more basic function that has been shifted, reflected, stretched, or compressed and indicate the shape of the function that was found using the following figure.

- (b) Graph this function by indicating how the basic function found in part a) has been shifted, reflected, stretched, or compressed.
- (c) Determine the domain and range of this function. Write your answer in interval notation.

7. If
$$f(x) = \begin{cases} x+3, & -2 \le x < 1 \\ 4, & x = 1 \\ -x+2, & x > 1 \end{cases}$$

(a) Evaluate the following

i.
$$f(-2) =$$
 ii. $f(0) =$ iii. $f(1) =$ iv. $f(4) =$

ii.
$$f(0) =$$

iii.
$$f(1) =$$

iv.
$$f(4) =$$

- (b) Find the domain of f(x)
- (c) Choose the correct graph of this function below.

8. Find the equation of each graph.

(a)
$$y = \sqrt{x} + 1$$

(c)
$$y = -x^2 + 4$$

(e)
$$y = x^3 + 1$$

(g)
$$y = x^2 - 4$$

(b)
$$y = |x| - 1$$

(d)
$$y = \sqrt[3]{x} - 2$$

(f)
$$y = |x+1|$$

$$\begin{array}{llll} \text{(a)} & y = \sqrt{x} + 1 & \text{(c)} & y = -x^2 + 4 & \text{(e)} & y = x^3 + 1 & \text{(g)} & y = x^2 - 4 \\ \text{(b)} & y = |x| - 1 & \text{(d)} & y = \sqrt[3]{x} - 2 & \text{(f)} & y = |x + 1| & \text{(h)} & y = \sqrt{x - 1} \end{array}$$

 $(1)_{-}$

(3)__

 $(4)_{--}$