1.

Determine the domain and range of the function defined as  $g(x) = \sqrt{x+7}$ . Express your answer in interval notation.

2.

For  $f(x) = x^2 + 3$  evaluate and simplify:

(a) 
$$f(x+1) =$$

(b) 
$$f(x+h) =$$

(a) 
$$f(x+1) =$$
 (b)  $f(x+h) =$  (c)  $f(x+h) - f(x) =$  (d)  $\frac{f(x+h) - f(x)}{h} =$ 

- 3. For  $y = (x 4)^2$  determine wether the graph opens up or down, find the vertex, find the axis of symmetry, find the x- and y- intercepts. Sketch the graph of the function.
- 4. For  $f(x) = -2x x^2$  determine wether the graph opens up or down, find the vertex, find the axis of symmetry, find the x- and y- intercepts. Sketch the graph of the function.
- Find the equation of the quadratic function that has the vertex (2,5) and passes through the point (4,1).
- True or False:
  - (a) \_\_\_\_\_ If the slope of a line is positive the line is increasing over its domain.
  - (b) \_\_\_\_\_ The slope of the line is the average rate of change of the linear function.
  - (c) \_\_\_\_\_The x-coordinate of the vertex of the graph  $y = ax^2 + bx + c$  is  $-\frac{b}{2a}$ .
  - (d) \_\_\_\_\_ The graph of  $f(x) = x + 2 4x^2$  opens up.
  - (e) \_\_\_\_\_ The y-coordinate of the vertex of  $f(x) = -x^2 + 6x + 7$  is f(3).
  - (f) \_\_\_\_\_ If the discriminant is zero, that is when  $b^2 4ac = 0$ , then the graph of  $f(x) = ax^2 + bx + c$  will touch the x-axis at its vertex.
- 7. For the functions f(x) = x + 4 and  $g(x) = x^2 8$ , graph f and g on the same axis, then solve for f(x) = g(x).
  - 8. For the quadratic function f(x) given below, determine whether f has a maximum value or a minimum value. Then find this value.

(a) 
$$f(x) = x^2 - 4x + 3$$

(b) 
$$f(x) = -4 + 4x - x^2$$

9. Find the point on the line y = x that is closest to the point (-2, 4).

If 
$$f(x) = \begin{cases} x+4, & -3 \le x < 1 \\ 4, & x = 1 \\ -x+3, & x > 1 \end{cases}$$

(a) Evaluate the following

i. 
$$f(-2) =$$

ii. 
$$f(0) =$$

ii. 
$$f(0) =$$
 iii.  $f(1) =$  iv.  $f(4) =$ 

iv. 
$$f(4) =$$

(b) Choose the correct graph of this function below.









For the graph shown below determine:



(a) 
$$f(-3) =$$

(c) 
$$(f+g)(4) =$$

(e) 
$$(g \circ f)(2) =$$

(b) 
$$g(2) =$$

(d) 
$$(fg)(-6) =$$

(f) 
$$(f \circ g)(1) =$$