\qquad
Factoring Polynomials // GCF

(a) $6 a^{2}-18 a^{4}=$	$6 a^{2}\left(1-3 a^{2}\right)$
(b) $14 x^{3} y^{2}-28 x^{2} y^{3}+21 x^{2} y^{2}$	Work and answers
(c) $24(x-2)^{3}-16(x-2)^{2}+6(x-2)$	

Factoring trinomial $\mathbf{x}^{\wedge} \mathbf{2}+\mathbf{b x}+\mathbf{c}$

$x^{\wedge} 2-7 x+6$ $(x+m)(x+n)$ $m n=6$ and $m+n=-7$	Factors Product $m n=+-1,+-6,+-2,+-3$ Sum $=+-7,+-5$
	Answer $(x-1)(x-6)$

Solve a Quadratic Equation by Factoring

$X^{\wedge} 2+9 x+20=0$ Factor $->(x+4)(x+5)=0$	$(x+4)=0 \quad(x+5)=0$ $-4 \quad-4 \quad-5 \quad-5$ $X=-4$ and $x=-5$ [test if true into original]
$X^{\wedge} 2+9 x=-8$	Work and answers
$X^{\wedge} 2+13 X+12=0$	
$Y^{\wedge} 2-5 Y=14$	
$X^{\wedge} 2-3=2 X$	

Factoring trinomial $a x^{\wedge} \mathbf{2 + b x + c}$
$a x^{\wedge 2+b x+c}$
$2 x^{\wedge} 2+23 x+11$ is $\rightarrow(k x+m)(j x+n)$

Since both signs are positive the factors need to be all positive! ©

Factors of $\mathbf{a}=\mathbf{2}=\mathbf{k}, \mathbf{j}$	Factors of 11: \mathbf{m}, \mathbf{n}	$\mathbf{(k x + m})(\mathbf{j x} \mathbf{n})$	$\mathbf{a} \mathbf{x}^{\wedge} \mathbf{2}+\mathbf{b x} \mathbf{+} \mathbf{c}$
1,2	1,11	$(x+1)(2 x+11)$	$2 x^{\wedge} 2+13 x+11$
1,2	11,1	$(\mathbf{x}+\mathbf{1 1})(2 \mathbf{x}+\mathbf{1})$ Answer	$2 x^{\wedge} 2+23 x+11$
Positive factors	Positive factors		

$2 x^{\wedge} 2+15 x+7$	Work and answers
$3 x^{\wedge} 2+5 x+2$	

Factor Out a Common Constant

Common factor $[\mathbf{a x \wedge} \mathbf{2}+\mathbf{b x}+\mathbf{c}]$	Since both signs are positive the factors need to be all positive! \odot $8 x^{\wedge} 2+28 x+12$ since coefficients have a common factor of 4.
Factor 4 out. CF[ax^2 $+b x+c]$ $4\left[\left(2 x^{\wedge} 2+7 x+3\right)\right]$ $4\left(2 x^{\wedge} 2+7 x+3\right) \rightarrow$ Common Factor $[(k x+m)(j x+n)]$	

Factors of $\mathrm{a}=2=\mathrm{k}, \mathrm{j}$	Factors of 3: m, n	CF[(kx+m)(jx + n$)$]	CF[ax^2 + bx + c]
1, 2	1, 3	$4[(x+1)(2 x+3)]$	$4\left[2 x^{\wedge} 2+5 x+3\right]$
$1,2$ Positive factors	$3,1$ Positive factors	$\begin{gathered} 4[(x+3)(2 x+1)] \\ \text { Don't forget CF }=4 \\ 4[(x+3)(2 x+1)] \end{gathered}$	$\begin{aligned} & 4\left[2 x^{\wedge} 2+7 x+3\right] \\ & 4\left[2 x^{\wedge} 2+7 x+3\right] \end{aligned}$

$4 x^{\wedge} 2+6 x+2$	Work and answers
$7 x^{\wedge} 2-8 x+1$	
Hint: since the middle sign is negative and last sign	
is positive then your factors are negative.	
A negative times a negative = positive last sign	
A negative plus a negative = negative middle sign	

