Exponents

(a) 10^3	$10^{3} = \underbrace{10 \cdot 10 \cdot 10}_{3 \text{ factors of } 10} = 1000$
(b) $(-3)^4$	
$(c)-3^4$	
$(d) 2 \cdot 5^2$	
(e) $(2\cdot5)^2$	

Orders of Operations = PEMDAS = Parentheses, Exponents, Multiplication, Division, Addition, Substraction

Evaluate $3 \cdot 9 - 2^5 \div 4$ Evaluate $(30-5) \cdot 3 \div 15 + 7$	$3 \cdot 9 - 2^{5} \div 4 = 3 \cdot 9 - 32 \div 4$ $= 27 - 32 \div 4$ $= 27 - 8$ $= 19$	Evaluate the exponential Multiply Divide Subtract
Evaluate $\frac{2^4 - 11}{9 + 3 \cdot 2}$		
Evaluate $\frac{-7^2 - (-9)}{6(-3) - 1(-2)}$		
Evaluate $6x^2 + 5y - 3z$ using $x = -4$, $y = 3$, and $z = -6$.		
Evaluate $\frac{4y - 3(x - 1)^2}{z + 9}$ using $x = -4$, $y = 3$, and $z = -6$.		
Evaluate $\frac{\frac{x}{4} + \frac{y}{3}}{\frac{z}{2} - \frac{x}{2}}$ using $x = -4$, $y = 3$, and $z = -6$.		

Absolute Value Evaluate Expression

(a) -6.85	6.85
(b) $- 50 $	
2	
$(c) - \left -\frac{2}{3} \right =$	
(d) $ y $, if $y = \sqrt{2}$	

Let m = 13 and n = -9. Evaluate each expression.

(a) $ 3m + 5n =$	3(13) + 5(-9) 39 - 45 = -6 = 6
(b) $\frac{ 2m -3 n }{ m+n } =$	

Distributive Property

(a) $8(m-2n) =$	8(m-2n) = 8m-16n
(b) $-(-3r + 5s) =$	
(c) $\frac{3}{4} \left(\frac{5}{6} p + \frac{1}{2} q - 28 \right)$	

Polynomials

Polynomiais	
(a) $m^6 \cdot m^8$	$m^{6+8} = m^{14}$
(b) $(-5r^3)(6r^4)(-3r) =$	
(a) $(7^3)^5$	
(b) $(2^5y^3)^4$	
$(c) \left(\frac{4^3}{z^2}\right)^5 =$	
$\left(d\right)\left(\frac{-3a^3}{bc^4}\right)^2 =$	

Evaluation of the 0 power

(a) 8 ⁰	(a) $8^0 = 1$
(b) –8 ⁰	
(c) (-8) ⁰	
$(d) - (-8)^0$	
(e) $(-3b^8)^0$	

Adding and Subtracting Polynomials

(a) $(17x^3 - 10x^2 + x) + (-9x^3 + 10x^2 - 5x)$	$(17-9)x^3 + (-10+10)x^2 + (1-5)x$
	$8x^3-4x$
(b) $\left(-6m^4 - 11m^2 + 21\right) - \left(m^4 - 6m^2 + 35\right)$	
(c) $(10r^3s^6 + 5r^6s^3) + (25r^3s^6 - 15r^6s^3)$	
(d) $6(z^2-5z+3)-4(3z^2-2z+9)$	

Multiplying Polynomials

ividitiplying rolyholiliais	
Multiply $(4t-5)(3t^2-2t+7)$	$3t^{2} - 2t + 7$ $-4t - 5$ $-15t^{2} + 10t - 35 \leftarrow -5(3t^{2} - 2t + 7)$ $12t^{3} - 8t^{2} + 28t \leftarrow 4t(3t^{2} - 2t + 7)$ $12t^{3} - 23t^{2} + 38t - 35 Add in columns$
(7y+3)(4y-5)	Hint use FOIL = First Outer Inner Last F O I L $(7y)(4y) + (7y)(-5) + 3(4y) + 3(-5)$ $28y^2 - 23y - 15$ $-35y + 12y = -23y$
(6p+11)(6p-11)	
$x^3(2x-5)(2x+5)$	
(a) $(7m-10)(7m+10)$	
(b) $(4r^2 + 9)(4r^2 - 9)$	

(c) $(5x^2 - 8y^4)(5x^2 + 8y^4)$	
(d) $(8z+3)^2$	
(e) $(5z-12q^3)^2$	

Multiplying Complicated Binomials

Multiplying Complicated Binomials	
Find the product: $[(4x-3)+7y][(4x-3)-7y]$	$[(4x-3)+7y][(4x-3)-7y]$ Product of the sum and difference of two terms $=(4x-3)^2-(7y)^2$ $=16x^2-24x+9-49y^2$
Find the product: $(s+4t)^3$	

Dividing Polynomials

Dividing Polynomials	
Divide $12n^3 + 11n^2 + 5n - 8$ by $3n + 2$	$4n^2 + n + 1$
	$3n+2)12n^3+11n^2+5n-8$ $12n^3+8n^2$
	$^{\prime}$ 12 $n^{3}+8n^{2}$
	$\frac{3n^2}{1} + 5n$
	$3n^2 + 2n$
	3 <i>n</i> – 8
	3n+2
	<u>-10</u>
1 2 2	

Divide $8x^4 + 12x^2 + 7x - 18$ by $x^2 + 2$

Factoring Polynomials // GCF

$a^2\left(1-3a^2\right)$
a

Factoring by grouping

Factoring by grouping	
$r^2s + 3r^2 - 5s - 15 =$	$(r^2s+3r^2)-(5s+15)$
	$r^2(s+3)-5(s+3)$
	$(r^2-5)(s+3)$
$4m^2 - m^2n + 4n - n^2 =$	
$9y^3 - 15y^2 + 6y - 10 =$	