EXPONENTIAL & Logarithmic FUNCTIONS

5.6

Law	Example
$x^1 = x$	$6^1 = 6$
$x^0 = 1$	7 ⁰ = 1
$x^{-1} = 1/x$	4 ⁻¹ = 1/4
$x^m x^n = x^{m+n}$	$x^2x^3 = x^{2+3} = x^5$
$x^m/x^n = x^{m-n}$	$x^6/x^2 = x^{6-2} = x^4$
$(x^m)^n = x^{mn}$	$(x^2)^3 = x^{2 \times 3} = x^6$
$(xy)^n = x^n y^n$	$(xy)^3 = x^3y^3$
$(x/y)^n = x^n/y^n$	$(x/y)^2 = x^2 / y^2$
$x^{-n} = 1/x^n$	$x^{-3} = 1/x^3$
And the law about Fractional Exponents:	

$$x^{\frac{m}{n}} = \sqrt[n]{x^m}$$
 $x^{\frac{2}{3}} = \sqrt[3]{x^2}$ $= (\sqrt[n]{x})^m$ $= (\sqrt[3]{x})^2$

Properties of Logarithms

In the properties given next, M and a are positive real numbers, $a \ne 1$, and r is any real number.

The number $\log_a M$ is the exponent to which a must be raised to obtain M. That is,

$$a^{\log_a M} = M \tag{1}$$

The logarithm to the base a of a raised to a power equals that power. That is,

$$\log_a a^r = r \tag{2}$$

Properties of Logarithms

In the following properties, M, N, and a are positive real numbers, $a \neq 1$, and r is any real number.

The Log of a Product Equals the Sum of the Logs

$$\log_a(MN) = \log_a M + \log_a N \tag{3}$$

The Log of a Quotient Equals the Difference of the Logs

$$\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N \tag{4}$$

The Log of a Power Equals the Product of the Power and the Log

$$\log_a M^r = r \log_a M \tag{5}$$

$$a^x = e^{x \ln a} \tag{6}$$

5.5 Properties and Applications of Logarithms

SUMMARY Properties of Logarithms

In the list that follows, a, b, M, N, and r are real numbers. Also, a > 0, $a \ne 1$, b > 0, $b \ne 1$, M > 0, and N > 0.

Definition

 $y = \log_a x \text{ means } x = a^y$

Properties of logarithms

 $\log_a 1 = 0$; $\log_a a = 1$

 $\log_a M^r = r \log_a M$

 $a^{\log_a M} = M$; $\log_a a^r = r$

 $a^x = e^{x \ln a}$

 $\log_a(MN) = \log_a M + \log_a N$

If M = N, then $\log_a M = \log_a N$.

 $\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N \qquad \qquad \text{If } \log_a M = \log_a N, \text{ then } M = N.$

Change-of-Base Formula

$$\log_a M = \frac{\log_b M}{\log_b a}$$

Properties of Logarithms (Recall that logs are only defined for positive values of x.)

For the natural logarithm For logarithms base a

$$1. \ln xy = \ln x + \ln y$$

$$2. \ln \frac{x}{y} = \ln x - \ln y$$

$$3. \ln x^y = y \cdot \ln x$$

$$4. \ln e^x = x$$

5.
$$e^{\ln x} = x$$

1.
$$\log_a xy = \log_a x + \log_a y$$

2.
$$\ln \frac{x}{y} = \ln x - \ln y$$
 2. $\log_a \frac{x}{y} = \log_a x + \log_a y$ 2. $\log_a \frac{x}{y} = \log_a x - \log_a y$ 1. $\log_b 1 = 0$

3.
$$\ln x^y = y \cdot \ln x$$
 3. $\log_a x^y = y \cdot \log_a x$

$$4. \log_a a^x = x$$

$$5. \ a^{\log_a x} = x$$

General Properties

1.
$$\log_b 1 = 0$$

$$2.\log_b b = 1$$

$$3.\log_b b^{\mathbf{x}} = 0$$

4.
$$b^{\log_b x} = x$$

Useful Identities for Logarithms

Natural Logarithms For the natural logarithm For logarithms base a $1. \ln 1 = 0$ 1. $\log_a a = 1$, for all a > 01. $\ln e = 1$ 2. $\ln e = 1$ 2. $\log_a 1 = 0$, for all a > 0 $2. \ln 1 = 0$ 3. $\ln e^{x} = x$ 4. $e^{\ln x} = x$ **Exponential Laws** Properties of Natural Logarithms $a^{0} = 1$, for $a \neq 0$ 1. $\ln 1 = 0$ since $e^0 = 1$. 2. $\ln e = 1 \text{ since } e^1 = e$. 3. $\ln e^x = x$ and $e^{\ln x} = x$ inverse property 4. If $\ln x = \ln y$, then x = y. one-to-one property $\log_a a = 1$ $\log_a 1 = 0$

46.

Use the properties of logarithms to expand or simplify the following expression as much as possible. Simplify any numerical expressions that can be evaluated without a calculator.

(a) $\log_9(81x^3)$

(c) $\log_3(\frac{x-4}{x^7})$ (d) $\ln e^{42}$

(e) $\log_{10} 5 + \log_{10} 2$ (f) $e^{\ln 25}$

(b) ln ⁵√ey

В	С
E	F
	E

47.

Let $\log A = 3$ and $\log B = -12$. Find $\log \frac{A}{B}$.

48.

Solve the following equations. If there is no solution, state "No Solution".

(a)
$$(\frac{1}{2})^{5x+5} = (\frac{1}{4})^4$$

(b)
$$3e^{4x} = 90$$

(c)
$$\log_9(x^2 + 12x + 32) - \log_9(x + 8) = 0$$

(d)
$$e^{2x+5} = 12^{\frac{2x}{7}}$$

(e)
$$\log_5(x-1) + \log_5(x-3) = 1$$

(f)
$$5^{-x-9} = 625$$

(g)
$$2^{x^2+5x} = 4^{-3}$$

49.

Find $f \circ g(x)$ and $g \circ f(x)$ when $f(x) = \ln(x)$ and $g(x) = e^{4x}$.

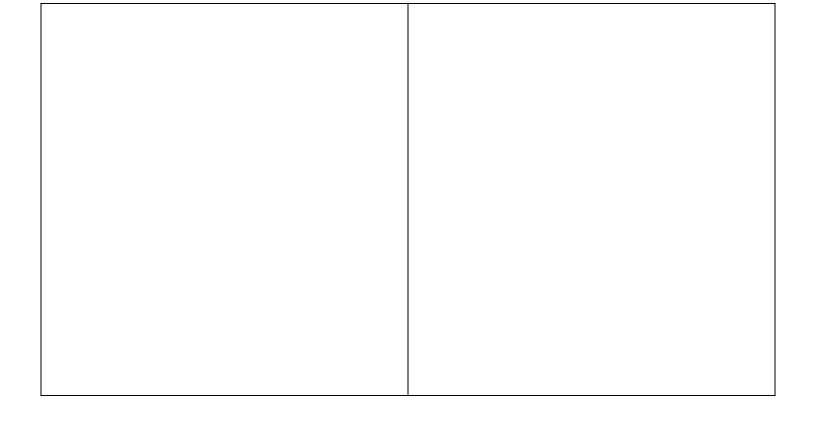
	\sim	
. つ	U.	
_	٠.	

Find the domain of the function $f(x) = \ln(x-3)$. Determine the range and any asymptotes of f(x).

51.

For $f(x) = 2 + \log(x - 5)$.

- (a) Identify and graph the more basic function that has been shifted, reflected, stretched, or compressed to obtain f(x).
- (b) Graph f(x).



52.

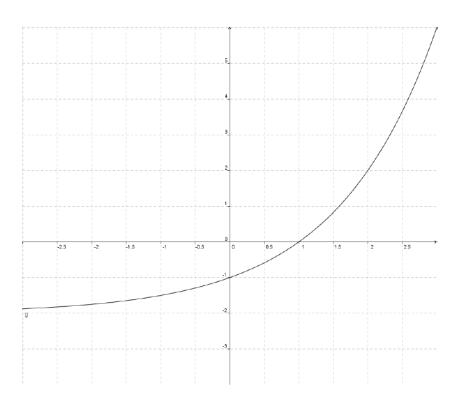
Which function matches the graph shown in the following graph?

(a)
$$y = 2^{x+2}$$

(b)
$$y = 2^{x+1} + 2$$
 (c) $y = 2^{x-2}$

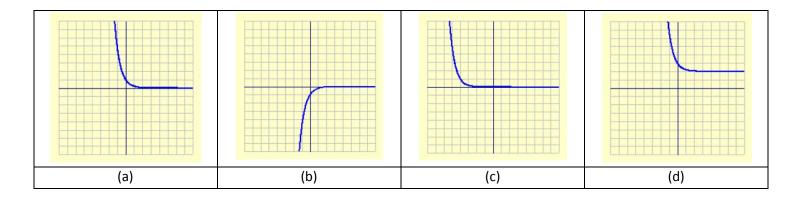
(c)
$$y = 2^{x-2}$$

(d)
$$y = 2^x - 2$$



EXTRA PROBLEMS

Indicate which of the following four graphs is the correct graph of the function $q(x) = (\frac{1}{5})^x$



Indicate which of the following four graphs is the correct graph of the function $g(x) = \log_7(x) + 5$

