Laws of Exponents and Radicals

Let a and b be real numbers and m and n be rational numbers. Then the following properties of exponents hold, provided that all of the expressions appearing in a particular equation are defined.

1. $a^{m} a^{n}=a^{m+n}$
2. $\left(a^{m}\right)^{n}=a^{m n}$
3. $(a b)^{m}=a^{m} b^{m}$
4. $a^{0}=1$, for $a \neq 0$
5. $\frac{a^{m}}{a^{n}}=a^{m-n}$, for $a \neq 0$
6. $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$, for $b \neq 0$
7. $a^{-m}=\frac{1}{a^{m}}$, for $a \neq 0$
8. $a^{\frac{1}{n}}=\sqrt[n]{a}$, where n is an integer
9. $\quad a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$, where m and n are integers
10. $\sqrt[m]{a} \cdot \sqrt[m]{b}=\sqrt[m]{a b}$
11. $\sqrt[m]{\frac{a}{b}}=\frac{\sqrt[m]{a}}{\sqrt[m]{b}}$, for $b \neq 0$
12. $\sqrt[n]{a^{n}}=|a|$, if n is even
13. $\sqrt[n]{a^{n}}=a$, if n is odd
14. $\sqrt[m]{\sqrt[n]{a}}=\sqrt[m n]{a}$

Note: formulas $8-14$ hold only for values of a, b, m, and n for which all of the radicals appearing are defined.

