Laws of Exponents and Radicals

Let a and b be real numbers and m and n be rational numbers. Then the following properties of exponents hold, provided that all of the expressions appearing in a particular equation are defined.

 $1. \quad a^m a^n = a^{m+n}$

$$2. \quad (a^m)^n = a^{mn}$$

$$3. \quad (ab)^m = a^m b^m$$

4. $a^0 = 1$, for $a \neq 0$

5.
$$\frac{a^m}{a^n} = a^{m-n}$$
, for $a \neq 0$

6.
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$
, for $b \neq 0$

7.
$$a^{-m} = \frac{1}{a^m}$$
, for $a \neq 0$

- 8. $a^{\frac{1}{n}} = \sqrt[n]{a}$, where *n* is an integer
- 9. $a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$, where *m* and *n* are integers

10.
$$\sqrt[m]{a} \cdot \sqrt[m]{b} = \sqrt[m]{ab}$$

11.
$$\sqrt[m]{\frac{a}{b}} = \frac{\sqrt[m]{a}}{\sqrt[m]{b}}$$
, for $b \neq 0$

12. $\sqrt[n]{a^n} = |a|$, if *n* is even

13.
$$\sqrt[n]{a^n} = a$$
, if n is odd

14.
$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$$

Note: formulas 8 - 14 hold only for values of a, b, m, and n for which all of the radicals appearing are defined.