Properties of Exponents and Logarithms

Exponents

Let a and b be real numbers and m and n be integers. Then the following properties of exponents hold, provided that all of the expressions appearing in a particular equation are defined.

1.
$$a^{m}a^{n} = a^{m+n}$$

2. $(a^{m})^{n} = a^{mn}$
3. $(ab)^{m} = a^{m}b^{m}$
4. $\frac{a^{m}}{a^{n}} = a^{m-n}, a \neq 0$
5. $\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}, b \neq 0$
6. $a^{-m} = \frac{1}{a^{m}}, a \neq 0$
7. $a^{\frac{1}{n}} = \sqrt[n]{a}$
8. $a^{0} = 1, a \neq 0$
9. $a^{\frac{m}{n}} = \sqrt[n]{a^{m}} = \left(\sqrt[n]{a}\right)^{m}$

where m and n are integers in properties 7 and 9.

Logarithms

Definition: $y = \log_a x$ if and only if $x = a^y$, where a > 0. In other words, logarithms are exponents.

Remarks:

- $\log x$ always refers to log base 10, i.e., $\log x = \log_{10} x$.
- $\ln x$ is called the natural logarithm and is used to represent $\log_e x$, where the irrational number $e \approx 2.71828$. Therefore, $\ln x = y$ if and only if $e^y = x$.
- Most calculators can directly compute logs base 10 and the natural log. For any other base it is necessary to use the change of base formula: $\log_b a = \frac{\ln a}{\ln b}$ or $\frac{\log_{10} a}{\log_{10} b}$.

Properties of Logarithms (Recall that logs are only defined for positive values of x.)

For the natural logarithmFor logarithms base a1. $\ln xy = \ln x + \ln y$ 1. $\log_a xy = \log_a x + \log_a y$ 2. $\ln \frac{x}{y} = \ln x - \ln y$ 2. $\log_a \frac{x}{y} = \log_a x - \log_a y$ 3. $\ln x^y = y \cdot \ln x$ 3. $\log_a x^y = y \cdot \log_a x$ 4. $\ln e^x = x$ 4. $\log_a a^x = x$ 5. $e^{\ln x} = x$ 5. $a^{\log_a x} = x$

Useful Identities for Logarithms

For the natural logarithm	For logarithms base a
1. $\ln e = 1$	1. $\log_a a = 1$, for all $a > 0$
2. $\ln 1 = 0$	2. $\log_a 1 = 0$, for all $a > 0$