$a^{m} a^{n}=a^{m+n}$
e.g. $a^{2} a^{3}=(a a)(a a a)=a^{5}$
(ii) $\quad\left(a^{m}\right)^{n}=a^{m n}$
e.g. $\quad\left(a^{2}\right)^{3}=(a a)(a a)(a a)=a^{6}$
(iii) $\frac{a^{m}}{a^{n}}=a^{m-n}$
e.g. $\frac{a^{2}}{a^{5}}=a^{-3}=\frac{1}{a^{3}}$
(iv) $(a b)^{m}=a^{m} b^{m}$
e.g. $(a b)^{2}=(a b)(a b)=(a a)(b b)=a^{2} b^{2}$
(v) $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$
e.g. $\left(\frac{a}{b}\right)^{2}=\frac{a}{b} \cdot \frac{a}{b}=\frac{a a}{b b}=\frac{a^{2}}{b^{2}}$

Properties of Exponents

Throughout this table, a and b may be taken to represent constants, variables, or more complicated algebraic expressions. The letters n and m represent integers.

Property

1. $a^{n} \cdot a^{m}=a^{n+m}$

$$
(-3)^{3} \cdot(-3)^{-1}=(-3)^{3+(-1)}=(-3)^{2}=9
$$

2. $\quad \frac{a^{n}}{a^{n}}=a^{n-m}$

$$
\frac{7^{9}}{7^{10}}=7^{9-10}=7^{-1}
$$

3. $a^{-n}=\frac{1}{a^{n}}$

$$
5^{-2}=\frac{1}{5^{2}}=\frac{1}{25} \quad \text { and } \quad x^{3}=\frac{1}{x^{-3}}
$$

4. $\left(d^{n}\right)^{m}=d^{n m}$

$$
\left(2^{3}\right)^{2}=2^{3 \cdot 2}=2^{6}=64
$$

Properties of Exponents, cont.
Property

Example

5. $(a b)^{n}=a^{n} b^{n}$

$$
(7 x)^{3}=7^{3} x^{3}=343 x^{3} \text { and }
$$

$$
\left(-2 x^{5}\right)^{2}=(-2)^{2}\left(x^{5}\right)^{2}=4 x^{10}
$$

6. $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$

$$
\left(\frac{3}{x}\right)^{2}=\frac{3^{2}}{x^{2}}=\frac{9}{x^{2}} \text { and }
$$

$$
\left(\frac{1}{3 z}\right)^{2}=\frac{1^{2}}{(3 z)^{2}}=\frac{1}{9 z^{2}}
$$

7. $\left(\frac{a}{b}\right)^{-n}=\frac{b^{n}}{a^{n}}$
$\left(\frac{5}{4}\right)^{-3}=\frac{4^{3}}{5^{3}}=\frac{64}{125}$
8. $\quad \frac{a^{-m}}{b^{-n}}=\frac{b^{n}}{a^{m}}$

$$
\frac{3^{-2}}{2^{-4}}=\frac{2^{4}}{3^{2}}=\frac{16}{9}
$$

In the above table, it is assumed that every expression is defined. That is, if an exponent is 0 , then the base is non-zero, and if an expression appears in the denominator of a fraction, then that expression is non-zero. Remember that $a^{0}=1$ for every $a \neq 0$.

Incorrect Statements

$(5 x)^{2}=25 x^{2}$

1. $a^{m} a^{n}=a^{m+n}$
2. $\left(a^{m}\right)^{n}=a^{m n}$
3. $(a b)^{m}=a^{m} b^{m}$
4. $a^{0}=1$, for $a \neq 0$
5. $\frac{a^{m}}{a^{n}}=a^{m-n}$, for $a \neq 0$
6. $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$, for $b \neq 0$
7. $a^{-m}=\frac{1}{a^{m}}$, for $a \neq 0$

Let a and b be real numbers and m and n be integers. Then the following properties of exponents hold, provided that all of the expressions appearing in a particular equation are defined.

1. $a^{m} a^{n}=a^{m+n}$
2. $\left(a^{m}\right)^{n}=a^{m n}$
3. $(a b)^{m}=a^{m} b^{m}$
4. $\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0$
5. $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}, b \neq 0$
6. $a^{-m}=\frac{1}{a^{m}}, a \neq 0$
7. $a^{\frac{1}{n}}=\sqrt[n]{a}$
8. $a^{0}=1, a \neq 0$
9. $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$
where m and n are integers in properties 7 and 9 .

Name the base and exponent in the following expressions. Then, use the definition of exponents as repeated multiplication to simplify.

8^{2}	$(-12)^{2}$
The base is 8	The base is -12
The exponent is 2	The exponent is 2
$8^{2}=(8)(8)=64$	$(-12)^{2}=(-12)(-12)=144$
$(-10)^{2}$	$(-2)^{3}$
The base is -10	The base is -2
The exponent is 2	The exponent is 3
$(-10)^{2}=(-10)(-10)=100$	$(-2)^{3}=(-2)(-2)(-2)=-8$
$\left(\frac{3}{5}\right)^{2}$	$\left(-\frac{3}{4}\right)^{2}$
The base is $\frac{3}{5}$	The base is $-\frac{3}{4}$
The exponent is 2	The exponent is 2
$\left(\frac{3}{5}\right)^{2}=\left(\frac{3}{5}\right)\left(\frac{3}{5}\right)=\frac{9}{25}$	$\left(-\frac{3}{4}\right)^{2}=\frac{9}{16}$

Adding Exponents \& Polynomials [See adding polynomials]

Subtracting Exponents \& Polynomials [See subtracting Polynomials]

Multiplying [TE1-B]

$v^{4} \cdot v^{3}=\underline{v^{4+3}=v^{7}}$	$y^{5} \cdot y^{8} \cdot y^{11} \cdot y^{14}=y^{5+8+11+14}=y^{38}$
$\left(b^{2}\right)^{2}=\underline{b^{2 \cdot 2}}=b^{4}$	$(-6 u)^{3}=\underline{(-6)^{3}\left(u^{3}\right)=-6^{3} u^{3} \text { or }-216 u^{3}}$
$(-3 a b)^{3}=(-3)^{3}(a)^{3}\left(b^{3}\right)=-27 a^{3} b^{3}$	$\left(4 p^{6}\right)^{5}=$ $(4)^{5} \cdot\left(p^{6}\right)^{5}=1024 \cdot p^{6 \cdot 5}=1024 p^{30}$
$\begin{aligned} \left(t^{9}\right)^{3}\left(t^{5}\right)^{7} & =\left(t^{9 \cdot 3}\right)\left(t^{5 \cdot 7}\right) \\ & =\left(t^{27}\right)\left(t^{35}\right) \\ & =t^{27+35} \\ & =t^{62} \end{aligned}$	$\begin{aligned} \left(2 r^{2}\right)^{7}(2 r)^{9} & =\left(2^{7} r^{2 \cdot 7}\right)\left(2^{9} r^{9}\right) \\ & =\left(128 r^{14}\right)\left(512 r^{9}\right) \\ & =(128 \cdot 512) r^{14+9} \\ & =65,536 r^{23} \end{aligned}$
$\left(\frac{4}{5} y^{7} p^{3}\right)^{4}=\left(\frac{4}{5}\right)^{4} y^{7 \cdot 4} p^{3-4}=\frac{256}{625} y^{28} p^{12}$	

Dividing [TE2-B]

Division	
$\frac{7^{9}}{7^{11}}=7^{9-11}=7^{-2}=\frac{1}{7^{2}}=\frac{1}{49}$	$7^{-2}=\frac{1}{7^{2}}=\frac{1}{49}$
$\frac{9^{3}}{9^{0}}=9^{3-0}=9^{3}=729$	$(3 a)^{-1}=\frac{1}{3 a}$

$\left(\frac{\boldsymbol{x}}{6}\right)^{4}=\frac{x^{4}}{6^{4}}=\frac{x^{4}}{1,296}$	$\frac{(2 r)^{-12}}{(2 r)^{-5}}=(2 r)^{-12-(-5)}$
	$=(2 r)^{-7}$
$\left(\frac{7}{y}\right)^{3}=\frac{7^{3}}{y^{3}}=\frac{343}{y^{3}}$	$=\frac{1}{(2 r)^{7}}$
$\left(-4 b^{2}\right)^{0}=1$	$=\frac{1}{2^{7} r^{7}}$
$\left(-64 z^{3}\right)^{1}=-64 z^{3}$	$=\frac{1}{128 r^{7}}$
$\begin{aligned} & (2 c p)^{9}= \\ & \underline{2}^{9} \cdot c^{9} \cdot p^{9}=512 c^{9} p^{9} \end{aligned}$	$t^{3} \cdot t^{-7}=t^{3+(-7)}=t^{-4}=\frac{1}{t^{4}}$
$\left(7 s^{9} v\right)^{1}=\underline{7^{1} \cdot\left(s^{9}\right)^{1} \cdot v^{1}=7 s^{9} v}$	$\frac{q^{13}}{\left(q^{4}\right)^{6}}=\frac{q^{13}}{q^{4 \cdot 6}}=\frac{q^{13}}{q^{24}}=q^{13-24}=q^{-11}=\frac{1}{q^{11}}$

