Exponents [TE1-B]

(i)
$$a^m a^n = a^{m+n}$$
 e.g. $a^2 a^3 = (aa)(aaa) = a^5$

(ii)
$$(a^m)^n = a^{mn}$$
 e.g. $(a^2)^3 = (aa)(aa)(aa) = a^6$

(iii)
$$\frac{a^m}{a^n} = a^{m-n}$$
 e.g. $\frac{a^2}{a^5} = a^{-3} = \frac{1}{a^3}$

(iv)
$$(ab)^m = a^m b^m$$
 e.g. $(ab)^2 = (ab)(ab) = (aa)(bb) = a^2 b^2$

(v)
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$
 e.g. $\left(\frac{a}{b}\right)^2 = \frac{a}{b} \cdot \frac{a}{b} = \frac{aa}{bb} = \frac{a^2}{b^2}$

Properties of Exponents

Throughout this table, a and b may be taken to represent constants, variables, or more complicated algebraic expressions. The letters n and m represent integers.

Property

Example

1.
$$a^n \cdot a^m = a^{n+m}$$
 $(-3)^3 \cdot (-3)^{-1} = (-3)^{3+(-1)} = (-3)^2 = 9$

2.
$$\frac{a^n}{a^m} = a^{n-m} \qquad \frac{7^9}{7^{10}} = 7^{9-10} = 7^{-1}$$

3.
$$a^{-n} = \frac{1}{a^n}$$
 $5^{-2} = \frac{1}{5^2} = \frac{1}{25}$ and $x^3 = \frac{1}{x^{-3}}$

4.
$$(a^n)^m = a^{nm}$$
 $(2^3)^2 = 2^{3 \cdot 2} = 2^6 = 64$

Properties of Exponents, cont.

Property Example

5.
$$(ab)^n = a^n b^n$$
 $(7x)^3 = 7^3 x^3 = 343x^3$ and $(-2x^5)^2 = (-2)^2 (x^5)^2 = 4x^{10}$

6.
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$
 $\left(\frac{3}{x}\right)^2 = \frac{3^2}{x^2} = \frac{9}{x^2}$ and $\left(\frac{1}{3z}\right)^2 = \frac{1^2}{(3z)^2} = \frac{1}{9z^2}$

7.
$$\left(\frac{a}{b}\right)^{-n} = \frac{b^n}{a^n}$$
 $\left(\frac{5}{4}\right)^{-3} = \frac{4^3}{5^3} = \frac{64}{125}$

8.
$$\frac{a^{-m}}{b^{-n}} = \frac{b^n}{a^m}$$

$$\frac{3^{-2}}{2^{-4}} = \frac{2^4}{3^2} = \frac{16}{9}$$

In the above table, it is assumed that every expression is defined. That is, if an exponent is 0, then the base is non-zero, and if an expression appears in the denominator of a fraction, then that expression is non-zero. Remember that $a^0 = 1$ for every $a \neq 0$.

Incorrect Statements

$$x^3 \cdot x^6 = x^{18}$$

$$2^5 \cdot 2^4 = 4^9$$

$$(x^3 + 6y)^{-1} = \frac{1}{x^3} + \frac{1}{6y}$$

$$(5x)^2 = 5x^2$$

Corrected Statements

$$x^3 \cdot x^6 = x^9$$

$$2^5 \cdot 2^4 = 29$$

$$(x^3 + 6y)^{-1} = \frac{1}{x^3 + 6y}$$

$$(5x)^2 = 25x^2$$

$$1. \quad a^m a^n = a^{m+n}$$

2.
$$(a^m)^n = a^{mn}$$

$$3. \quad (ab)^m = a^m b^m$$

4.
$$a^0 = 1$$
, for $a \neq 0$

5.
$$\frac{a^m}{a^n} = a^{m-n}, \text{ for } a \neq 0$$

6.
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$
, for $b \neq 0$

7.
$$a^{-m} = \frac{1}{a^m}$$
, for $a \neq 0$

Let a and b be real numbers and m and n be integers. Then the following properties of exponents hold, provided that all of the expressions appearing in a particular equation are defined.

1.
$$a^m a^n = a^{m+n}$$
 2. $(a^m)^n = a^{mn}$

$$(a^m)^n = a^{mn}$$

3.
$$(ab)^m = a^m b^m$$

4.
$$\frac{a^m}{a^n} = a^{m-n}, \ a \neq 0$$
 5. $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, \ b \neq 0$ 6. $a^{-m} = \frac{1}{a^m}, \ a \neq 0$

5.
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, \ b \neq 0$$

6.
$$a^{-m} = \frac{1}{a^m}, a \neq 0$$

7.
$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

8.
$$a^0 = 1$$
, $a \neq 0$

7.
$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
 8. $a^0 = 1, a \neq 0$ 9. $a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$

where m and n are integers in properties 7 and 9.

Name the base and exponent in the following expressions. Then, use the definition of exponents as repeated multiplication to simplify.

 8^2

The base is 8

The exponent is 2

$$8^2 = (8)(8) = 64$$

 $(-12)^2$

The base is -12

The exponent is 2

$$(-12)^2 = (-12)(-12) = 144$$

 $(-10)^2$

The base is -10

The exponent is 2

$$(-10)^2 = (-10)(-10) = 100$$

 $(-2)^{3}$

The base is -2

The exponent is 3

$$(-2)^3 = (-2)(-2)(-2) = -8$$

The base is $\frac{3}{2}$

The exponent is 2

$$\left(\frac{3}{5}\right)^2 = \left(\frac{3}{5}\right)\left(\frac{3}{5}\right) = \frac{9}{25}$$

 $\left(-\frac{3}{4}\right)^2$

The base is $-\frac{3}{4}$

The exponent is 2

$$\left(-\frac{3}{4}\right)^2 = \frac{9}{16}$$

Adding Exponents & Polynomials [See adding polynomials]

Subtracting Exponents & Polynomials [See subtracting Polynomials]

Multiplying [TE1-B]

Triancipiying [TET D]	
$v^4 \cdot v^3 = \underline{v^{4+3} = v^7}$	$y^5 \cdot y^8 \cdot y^{11} \cdot y^{14} = \underline{y^{5+8+11+14}} = \underline{y^{38}}$
$(b^2)^2 = \underline{b^{2 \cdot 2}} = \underline{b^4}$	$(-6u)^3 = (-6)^3(u^3) = -6^3u^3 \text{ or } -216u^3$
$(-3ab)^3 = \underline{(-3)^3(a)^3(b^3)} = -27a^3b^3$	$(4p^6)^5 =$ $\underline{(4)^5 \cdot (p^6)^5} = 1024 \cdot p^{6 \cdot 5} = 1024p^{20}$
$(t^{9})^{3}(t^{5})^{7} = \underline{(t^{9\cdot3})(t^{5\cdot7})}$ $= \underline{(t^{27})(t^{35})}$ $= \underline{t^{27+35}}$ $= \underline{t^{62}}$	$(2r^{2})^{7}(2r)^{9} = \underbrace{(2^{7}r^{2\cdot7})(2^{9}r^{9})}_{= (128r^{14})(512r^{9})}$ $= \underbrace{(128 \cdot 512)r^{14+9}}_{= 65,536r^{23}}$
$\left(\frac{4}{5}y^7p^3\right)^4 = \left(\frac{4}{5}\right)^4 y^{7\cdot 4}p^{3\cdot 4} = \frac{256}{625}y^{28}p^{12}$	

Dividing [TE2-B]

Division	Negative Exponents
$\frac{7^9}{7^{11}} = 7^{9-11} = 7^{-2} = \frac{1}{7^2} = \frac{1}{49}$	$7^{-2} = \frac{1}{7^2} = \frac{1}{49}$
$\frac{9^3}{9^0} = \frac{9^{3-0} = 9^3 = 729}{9^{3-1}}$	$(3a)^{-1} = \frac{1}{3a}$

$\left(\frac{x}{6}\right)^4 = \frac{x^4}{6^4} = \frac{x^4}{1,296}$	$\frac{(2r)^{-12}}{(2r)^{-5}} = (2r)^{-12-(-5)}$
$\left(\frac{7}{y}\right)^3 = \frac{7^3}{y^3} = \frac{343}{y^3}$	$= (2r)^{-7}$ $= \frac{1}{(2r)^7}$
$(-4b^2)^0 = 1$	$= \frac{1}{2^7 r^7} \\ = \frac{1}{128r^7}$
$(-64z^3)^1 = \frac{-64z^3}{(2cp)^9} =$	$t^3 \cdot t^{-7} = t^{3+(-7)} = t^{-4} = \frac{1}{t^4}$
$\frac{2^9 \cdot c^9 \cdot p^9 = 512c^9 p^9}{(7s^9 v)^1 = \frac{7^1 \cdot (s^9)^1 \cdot v^1 = 7s^9 v}{}}$	$\frac{q^{13}}{(q^4)^6} = \frac{q^{13}}{q^{4 \cdot 6}} = \frac{q^{13}}{q^{24}} = q^{13-24} = q^{-11} = \frac{1}{q^{11}}$