Chapter 3
(e) Do Homework - ALVARO RESTREPO - Windows Internet Explorer

Phttp://www.mathx|com/Student/PlayerHomework.aspx:homeworkdd=143739366\&questionid=1\&flushed=false\&cld=2251477\&back=http\%3\%\%2f\%2fwww.mathxl.com\%2fstudent\%2fD.Assignments.aspx\%/3fappproductid\%3d3\%26learningproduct\%: 图

Homework: HW1 - Chapter 3

Homework: HW1 - Chapter 3
Overview

For the functions $f(x)=-x+4$ and $g(x)=x^{2}-2$,
A. Graph f and g on the same Cartesian plane, and shade the region for which $f(x)>g(x)$, that is, the region below f and above g.
B. Solve $f(x)=g(x)$.
B. Solve $f(x)=g(x)$.
C. Use the result of part B to label the points of intersection of the graphs Use the resul
of f and g.
A. Choose the correct graph below.
○A.

\cdots

Oc.

OD.

B. The solutions to $f(x)=g(x)$ are $x=-3,2$.
(Use a comma to separate answers as needed.)
C. The points of intersection are $(-3,7)$ and $(2,2)$.
Question is complete.
(3)

View an Example

Homework: HW1 - Chapter 3
View an Example

For the functions $f(x)=-x+4$ and $g(x)=x^{2}-8$,
A. Graph f and g on the same Cartesian plane, and shade the region for which $f(x)>g(x)$, that is, the region below f and above g.
B. Solve $f(x)=g(x)$.
C. Use the result of part B to label the points of intersection of the graphs of f and g.
A. The graph of $f(x)=-x+4$ is a line with the slope $m=-1$ and y-intercept $(0,4)$. The graph of $g(x)=x^{2}-8$ is a parabola. It is the graph of $y=x^{2}$ shifted down 8 units. Graph f and g on the same Cartesian plane and shade the region below f and above g. The correct graph is shown on the right.

B. Set $f(x)=g(x)$ and solve the resulting equation for x.

$$
\begin{aligned}
-x+4 & =x^{2}-8 \\
x^{2}+x-12 & =0 \\
(x+4)(x-3) & =0
\end{aligned}
$$

Setting each factor equal to 0 separately and solving for x yields the solutions $\mathrm{x}=-4$ and $\mathrm{x}=3$.
Question is complete.

View an Example

For the functions $f(x)=-x+4$ and $g(x)=x^{2}-8$,
A. Graph f and g on the same Cartesian plane, and shade the region for which $f(x)>g(x)$, that is, the region below f and above g
B. Solve $f(x)=g(x)$
C. Use the result of part B to label the points of intersection of the graph of f and g.
C. The x -coordinates for the points of intersection were found in part B. To find the y -coordinates, substitute each of the x -coordinates back into one of the given functions, f or g , and simplify. We will use the linear function. First, substitute $\mathrm{x}=-4$.

$$
\begin{aligned}
f(x) & =-x+4 \\
f(-4) & =-(-4)+4 \\
& =8
\end{aligned}
$$

Therefore, the first point of intersection is $(-4,8)$.
Next, substitute $\mathrm{x}=3$ into the linear function and simplify.
$f(x)=-x+4$
$f(3)=-(3)+4$
$=1$
Therefore, the second point of intersection is $(3,1)$.

Question is complete.

