$$\sec \theta \le -1$$
 or $\sec \theta \ge 1$

The range of both the tangent function and the cotangent function is the set of all real numbers.

$$-\infty < \tan \theta < \infty$$
 $-\infty < \cot \theta < \infty$

You are asked to prove this in Problems 121 and 122.

Table 4 summarizes these results.

Table 4

Function	Symbol	Domain	Range
sine	$f(\theta) = \sin \theta$	All real numbers	All real numbers from -1 to 1, inclusive
cosine	$f(\theta) = \cos \theta$	All real numbers	All real numbers from −1 to 1, inclusive
tangent	$f(\theta) = \tan \theta$	All real numbers, except odd integer multiples of $\frac{\pi}{2}$ (90°)	All real numbers
cosecant	$f(\theta) = \csc \theta$	All real numbers, except integer multiples of π (180°)	All real numbers greater than or equal to 1 or less than or equal to -1
secant	$f(\theta) = \sec \theta$	All real numbers, except odd integer multiples of $\frac{\pi}{2}$ (90°)	All real numbers greater than or equal to 1 or less than or equal to -1
cotangent	$f(\theta) = \cot \theta$	All real numbers, except integer multiples of $\pi(180^\circ)$	All real numbers

Table 6

х	$y = \sin x$	(x, y)
0	0	(0, 0)
$\frac{\pi}{6}$	$\frac{1}{2}$	$\left(\frac{\pi}{6},\frac{1}{2}\right)$
$\frac{\pi}{2}$	1	$\left(\frac{\pi}{2},1\right)$
$\frac{5\pi}{6}$	$\frac{1}{2}$	$\left(\frac{5\pi}{6},\frac{1}{2}\right)$
π	0	$(\pi,0)$
$\frac{7\pi}{6}$	$-\frac{1}{2}$	$\left(\frac{7\pi}{6}, -\frac{1}{2}\right)$
$\frac{3\pi}{2}$	-1	$\left(\frac{3\pi}{2},-1\right)$
$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\left(\frac{11\pi}{6}, -\frac{1}{2}\right)$
2π	0	$(2\pi, 0)$

 $y=\sin x, 0 \le x \le 2\pi$. As the table shows, the graph of $y=\sin x, 0 \le x \le 2\pi$, begins at the origin. As x increases from 0 to $\frac{\pi}{2}$, the value of $y=\sin x$ increases from 0 to 1; as x increases from $\frac{\pi}{2}$ to π to $\frac{3\pi}{2}$, the value of y decreases from 1 to 0 to -1; as x increases from $\frac{3\pi}{2}$ to 2π , the value of y increases from -1 to 0. If we plot the points listed in Table 6 and connect them with a smooth curve, we obtain the graph shown in Figure 44.

Figure 44 $y = \sin x, 0 \le x \le 2\pi$

The graph in Figure 44 is one period, or **cycle**, of the graph of $y = \sin x$. To obtain a more complete graph of $y = \sin x$, continue the graph in each direction, as shown in Figure 45.

Figure 45

$$y = \sin x, -\infty < x < \infty$$

The graph of $y = \sin x$ illustrates some of the facts that we already know about the sine function.

Properties of the Sine Function $y = \sin x$

- 1. The domain is the set of all real numbers.
- 2. The range consists of all real numbers from -1 to 1, inclusive.
- The sine function is an odd function, as the symmetry of the graph with respect to the origin indicates.
- **4.** The sine function is periodic, with period 2π .
- 5. The x-intercepts are ..., -2π , $-\pi$, 0, π , 2π , 3π , ...; the y-intercept is 0.
- **6.** The absolute maximum is 1 and occurs at $x = \dots, -\frac{3\pi}{2}, \frac{\pi}{2}, \frac{5\pi}{2}, \frac{9\pi}{2}, \dots;$ the absolute minimum is -1 and occurs at $x = \dots, -\frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{2}, \frac{11\pi}{2}, \dots$

Now Work PROBLEM 9

х	$y = \cos x$	(x, y)
0	1	(0, 1)
$\frac{\pi}{3}$	$\frac{1}{2}$	$\left(\frac{\pi}{3},\frac{1}{2}\right)$
$\frac{\pi}{2}$	0	$\left(\frac{\pi}{2},0\right)$
$\frac{2\pi}{3}$	$-\frac{1}{2}$	$\left(\frac{2\pi}{3}, -\frac{1}{2}\right)$
π	-1	$(\pi, -1)$
$\frac{4\pi}{3}$	$-\frac{1}{2}$	$\left(\frac{4\pi}{3}, -\frac{1}{2}\right)$
$\frac{3\pi}{2}$	0	$\left(\frac{3\pi}{2},0\right)$
$\frac{5\pi}{3}$	$\frac{1}{2}$	$\left(\frac{5\pi}{3},\frac{1}{2}\right)$
2π	1	(2π, 1)

Figure 48.

Figure 48

0

F

e

$$\leq x \leq 2\pi$$

$$(0,1)$$

$$(2\pi, 1)$$

$$(\frac{\pi}{3}, \frac{1}{2})$$

$$(\frac{\pi}{3}, \frac{1}{2})$$

$$(\frac{\pi}{3}, \frac{1}{2})$$

$$(\frac{\pi}{3}, -\frac{1}{2})$$

$$(\frac{\pi}{3}, -\frac{1}{2})$$

$$(\pi, -1)$$

A more complete graph of $y = \cos x$ is obtained by continuing the graph in each direction, as shown in Figure 49.

Figure 49

The graph of $y = \cos x$ illustrates some of the facts that we already know about the cosine function.

Properties of the Cosine Function

- 1. The domain is the set of all real numbers.
- **2.** The range consists of all real numbers from -1 to 1, inclusive.
- **3.** The cosine function is an even function, as the symmetry of the graph with respect to the *y*-axis indicates.
- **4.** The cosine function is periodic, with period 2π .
- 5. The x-intercepts are $\dots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots$; the y-intercept is 1.
- **6.** The absolute maximum is 1 and occurs at $x = \ldots, -2\pi, 0, 2\pi, 4\pi, 6\pi, \ldots$; the absolute minimum is -1 and occurs at $x = \ldots, -\pi, \pi, 3\pi, 5\pi, \ldots$

! Graph Functions of the Form $y = A \cos(\omega x)$ Using Transformations

Graphing Functions of the Form $y = A \cos(\omega x)$

$\frac{\pi}{3} \approx 1.05$	$\frac{\sqrt{3}}{2}$	1/2	√3 ≈ 1.73
1.5	0.9975	0.0707	14.1
1.57	0.9999	7.96×10^{-4}	1255.8
1.5707	0.9999	9.6×10^{-5}	10,381
$\frac{\pi}{2} \approx 1.5708$	1	0	Undefined

If x is close to $-\frac{\pi}{2}$, but remains greater than $-\frac{\pi}{2}$, then sin x will be close to -1 and $\cos x$ will be positive and close to 0. The ratio $\frac{\sin x}{\cos x}$ approaches $-\infty$ $\left(\lim_{x \to -\frac{\pi}{2}^+} \tan x = -\infty\right)$. In other words, the vertical line $x = -\frac{\pi}{2}$ is also a vertical asymptote to the graph.

With these observations, we can complete one period of the graph. We obtain the complete graph of $y = \tan x$ by repeating this period, as shown in Figure 63.

Figure 63

$$y = \tan x, -\infty < x < \infty, x \text{ not equal}$$
 to odd multiples of $\frac{\pi}{2}, -\infty < y < \infty$

Check: Graph $Y_1 = \tan x$ and mpare the result with Figure 63. e TRACE to see what happens x gets close to $\frac{\pi}{2}$, but is less in $\frac{\pi}{2}$.

ctions

The graph of $y = \tan x$ in Figure 63 on page 409 illustrates the following properties.

Properties of the Tangent Function

- 1. The domain is the set of all real numbers, except odd multiples of $\frac{\pi}{2}$.
- **2.** The range is the set of all real numbers.
- **3.** The tangent function is an odd function, as the symmetry of the graph with respect to the origin indicates.
- **4.** The tangent function is periodic, with period π .
- 5. The x-intercepts are ..., -2π , $-\pi$, 0, π , 2π , 3π , ...; the y-intercept is 0.
- **6.** Vertical asymptotes occur at $x = \dots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \dots$

Now Work PROBLEMS 7 AND 15

1 Graph Functions of the Form $y = A \tan(\omega x) + B$ and $y = A \cot(\omega x) + B$

For tangent functions, there is no concept of amplitude since the range of the tangent function is $(-\infty, \infty)$. The role of A in $v = A \tan(\omega x) + B$ is to provide the

Table 10

x	$y = \cot x$	(x, y)
$\frac{\pi}{6}$	$\sqrt{3}$	$\left(\frac{\pi}{6},\sqrt{3}\right)$
$\frac{\pi}{4}$	1	$\left(\frac{\pi}{4},1\right)$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{3}$	$\left(\frac{\pi}{3}, \frac{\sqrt{3}}{3}\right)$
$\frac{\pi}{2}$	0	$\left(\frac{\pi}{2},0\right)$
$\frac{2\pi}{3}$	$-\frac{\sqrt{3}}{3}$	$\left(\frac{2\pi}{3}, -\frac{\sqrt{3}}{3}\right)$
$\frac{3\pi}{4}$	-1	$\left(\frac{3\pi}{4},-1\right)$
$\frac{5\pi}{6}$	$-\sqrt{3}$	$\left(\frac{5\pi}{6}, -\sqrt{3}\right)$

Now Work PROBLEM 21

The Graph of the Cotangent Function

We obtain the graph of $y = \cot x$ as we did the graph of $y = \tan x$. The perio \mathbf{a} $y = \cot x$ is π . Because the cotangent function is not defined for integer multi of π , we will concentrate on the interval $(0, \pi)$. Table 10 lists some points on graph of $y = \cot x$, $0 < x < \pi$. As x approaches 0, but remains greater than 0 value of $\cos x$ will be close to 1 and the value of $\sin x$ will be positive and close Hence, the ratio $\frac{\cos x}{\sin x} = \cot x$ will be positive and large; so as x approaches 0, x > 0, cot x approaches $\infty(\lim_{x \to 0^+} \cot x = \infty)$. Similarly, as x approaches π , remains less than π , the value of $\cos x$ will be close to -1, and the value of $\sin x$ be positive and close to 0. So the ratio $\frac{\cos x}{\sin x} = \cot x$ will be negative and approach $-\infty$ as x approaches $\pi(\lim_{x \to \infty} \cot x = -\infty)$. Figure 66 shows the graph

b

 $r\epsilon$

C

multiple of π . At such numbers, the cosecant function is not defined. In fact, the graph of the cosecant function has vertical asymptotes at integer multiples of π . Figure 67 shows the graph.

Figure 67

 $y = \csc x, -\infty < x < \infty, x \text{ not equal to integer multiples of } \pi, |y| \ge 1$

Using the idea of reciprocals, we can similarly obtain the graph of $y = \sec x$. See Figure 68.

Figure 68

 $y = \sec x, -\infty < x < \infty, x \text{ not equal}$ to odd multiples of $\frac{\pi}{2}, |y| \ge 1$

