CHAPTER 4 SULLIVAN 9™ EDITION BOOK MATH 120 p20f2

Review Appendix A Sec A.3
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Divide the polynomial 9x” — 3x* + 6x° + 7x* — 8x + 14 by the polynomial 3x* + 2x — 1.

Solution:
3¢ - 3+ Sy - 2
3%+ 2x — 1> 9" — 3+ 6 + T — S8 + 14
—(°+ &' —  3P)
— 9%+ 9 + ¢ — 8 + 14
—( =% - e’ +  3P)
15¢° + 4x% — 8x + 14
—( 15¢% + 10x% — 5x)
— 6x — 3x + 14
( —6x* — 4x + 2

x +
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Find the quotient (x® + 7x2 + 7x — 11) = (x + 5).

Write the division in the same format you use to divide
whole numbers.

X+ 2x - 3
X+53+7x2+7Tx—-11 B ix= X

X3 + 5x2 Subtract x? (x 4+ 5) =
X +5x2.
2x2 + Tx Simplify and bring down Tx.
2x2 + 10x Subtract 2x (x + 5) =
2x2 + 10x .

-3x-1N Simplify and bring down —11.

~3x— 15  Subtract —3 (x+ 5) =
—3x— 15 .

_4  Remainder

" The result is written as X2 + 2x — 3 + — 4

X+5"°
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3x’+7x*+8x+1byx—3

_ 32 _ 9 + 9 Synthetic Division requires the divisor to be
- - - in the format of “(x-k)”
x—3 W 4+ T+ 8+ 1
—(— I+ 9¢¢ ) Take the opposite of (x — 3)€=> (x - (+3))
~ 2%+ 8+ 1
—( —2¢* + 6x) 3] -3 7 8 1
2x + 1 -9 —6 6
-( x - 6) -3 2 2 7
7
Take the opposite of (x —3) €2 (X - (+3))
3 -3 7 8 1
T+(-9) 8+(-6) 1+6
- - _9 o] _6 2 6
‘J(_‘J_}_ﬁ,—f” ‘j(_g_}_’___,-——’" ‘1(21_;_,/’
-3 —2 2 7

xt -3 -5zt +2x-18

x+2

Example. Use synthetic division to perform the indicated operation:

Solation. The divisor, x + 2, must be written as a difference, x — (-2), to determine that the divider is —2.

2 ‘ 1 3 5 2 18
o 10 -0 16
| 1 5 5 =8 =2

4 3 2
—Ex —-Axt +2x—-16 -2

A A A A =2 -5x4 455 -9+
x+ 2 T x+ 2
f(x) = d(X\)' qex) + r(x)/d(x)

Dividend = Divisor - Quotient + Remainder/Divisor
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4.2 Rational Functions, [ Polynomial division (Review Appendix A Sec A.3)]

Ratios of polynomials are called rational functions. They include:

¥ -4 ) X’ 3y’

¥+ x+1

R(x) =

A rational function 15 a function of the form

R(x) =

where p and g are polynomial functions and g is not the zero polynomial. The
domain of a rational function is the set of all real numbers except those for
which the denominator ¢ is (. ]

Rational Functions

A rational function is a function that can be written in the form

_ p(x)
At q(x)

where p( x ) and g( x ) are both polynomial functions and g( x ) # 0. Of course, even though ¢ is
not allowed to be identically zero, there will often be values of x for which g (x) is zero, and af these
values the fraction is undefined. Consequently, the domain of fis the setJl x|qg(x)#£0 }

. ¥ ¥
4 4 | 1 A\l
2 2 ; 2 ............... :...\.‘.--.-_.__‘.Hﬁ
0 x 0 1 x a_\\-? x
-2 -2 -2
-4 el 4+ -4 1 B
-4 -2 0 2 4 -4 20 2 4 4 2 0 2 4
I 1
1 _ _
fx)=— glx)=—— h(x)=— 7 +2
1 x+2 2x+3

+
xr+1 r+1 r+1
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Graphingy = 1/x”2 and transformations

Graphingy = —
x

1
Graphingy = —
X

1
Analyze the graph of H(x) = —.

1
The domain of H{x) = —is the set of all real numbers x except 0. The graph has no
2

y-intercept, because x can never equal 0. The graph has no x-intercept because the
equation H{x) = 0 has no solution. Therefore, the graph of H will not cross or
touch either of the coordinate axes. Because

1 1
H{—x) = - =— = H{x)
(—x) x
H is an even function, so its graph is symmetric with respect to the v-axis.
1
Table 9 shows the behavior of H{x) = — for selected positive numbers x. (We
2

will use symmetry to obtain the graph of H when x < 0.) From the first three rows
~of Table 9, we see that, as the values of x approach (get closer to) 0, the values of
A\ H{x) become larger and larger positive numbers, so H 1s unbounded in the positive
direction. We use limit notation, !Eh H{x) = oo, read “the limit of H{x) as x

approaches zero equals infinity,” to mean that H{x) — o0 as x — (.

Look at the last four rows of Table 9. As x — 20, the values of H{x) approach ()
(the end behavior of the graph). In calculus, this is symbolized by writing
lim H{x) = 0. Figure 28 shows the graph. Notice the use of red dashed lines to

x—o0

convey the ideas discussed above.
Figure 28 : x=0 Table 9

1 | 1
Hix) = 2 ¥y x HO) = —

4

1
2

1
100 10,000

1

| 16000 100,000,000
L 1 1
— 1
1
B 100 10,000
1
o 10,000 100,000,000

y=0 =3
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1
Graph the rational function: R(x) = ——— + 1
(x —2)°
Solution  The domain of R i_s the set of all real numbers except x = 2. To graph R, start with

the graph of y = L,, See Figure 29 for the steps.
2

Figure 29 ly=10 xTz
| =2 |
¥y | ¥y :
3+ | it |
i | | (3.2)
(1,1 BVRRNE y= 1L —
|
1 1 [ ___4 {|1:1:|: 1 1 [ 1 : 1 1 [
y=0-2 3 y=10 ! 5 X 5 X
Replace xby x — 2; Add 1;
shift right shift up
2 units 1 unit
(@) y= - (b) y= — (6) y= —— +1
x? (x-2) (x = 2) ._j
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Asymptotes — a line approached by a curve in the limit as the curve approaches infinity.

X<2

2.0001=x<2.5

Vertical line x =2 and horizontal line
y =1 in the above figure.
HORIZONTAL ASYMPTOTE

A

X R(x)
10 1.0156
100 1.0001
1000 1.000001
10,000 1.00000001

(a)

The higher the value of

x =10, 100, 1000, 10000 the

R(X) ory = keeps reaching the value of
1 in the positive direction.

1 Limits are “x” to positive infinity
RX)=y = — + 1 Horizontal = x>+infinity R(x =1)
(x —2)
HORIZONTAL ASYMPTOTE \)\{ERTICAL ASYMPTOTE \ VERTICAL ASYMPTOTE
X R(x) X R(x) \ X R(x)
5 e 1.5 5 2.5 5
19 101 2.1 101
—100 1.0001 199 10,001 o 10,001
—1000 1.000001 1.999 1,000,001 2.001 1,000,001
—10,000 1.00000001 1.9999 100,000,001 2.0001 100,000,001
(b) © (d)
The higher the value of Xx=2 is not part of the domain As “x”>2

x =-10, -100, -1000, -10000 the
R(x) or y = keeps reaching the
value of 1 in the negative
direction.

Limits are “x” to negative infinity
R(x)=1ory=1

Horizontal = x=2>-infinity

but it is important to see the
graphs behavior as it approaches
X =2

As “x7<2

the value for “y” or R(x)
increases to infinity.

x =1.99 results y= 100,000,001
X>2"

Vertical = “y” or R(x) =2+inf

the value for “y” or R(x)
increases to infinity.
x = results y= 100,000,001

To see the effect better
2.0001 < “x” <25
the value for x>2"

Vertical = “y” or R(x) =2 +inf




Vertical & horizontal (oblique) asymptotes of a rational function

Page 9 of 23

Vertical Asymptotes

bound as x approaches c. Examples of vertical asymptotes appear in Figure 2. The graph of a
rational function cannot intersect a vertical asymptote.

The vertical line ¥ = ¢ is a vertical asymptote of a function fif f{ ¥ ) increases in magnitude without

8 J' o ‘ }'
i 4
6 0 X
2
4 -2
0 ——
2 —4
-2
0 X -6
-4
-2 -8
-4 2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Figure 2: Vertical Asymptotes
Finding Vertical Asymptotes

Find the vertical asymptotes, if any, of the graph of each rational function.

x+3 L
(@) Flx) =5 (b) R(I}—xg_4

X B v -9
() H{I)_,rg-i-'l @) G(I}_xgﬂ-q-.r—ﬂ

(a) Fisin lowest terms and the only zero of the denominatoris 1. The line x = 11s
the vertical asymptote of the graph of F.

(b) Risin lowest terms and the zeros of the denominator x> — 4 are —2 and 2. The
lines x = —2 and x = 2 are the vertical asymptotes of the graph of R.

(c) Hisinlowest terms and the denominator has no real zeros, because the equation
x> + 1 = 0 has no real solutions. The graph of H has no vertical asymptotes.

(d) Factor the numerator and denominator of G x) to determine if it is in lowest terms.

-9  (x+3)(x-3) x+3 )

2 = —~ = #
2tdr—-21 (x+7(x-3) x+71 X777

G(x) =

The only zero of the denominator of G(x) in lowest terms is —7. The line
x = —7 Is the only vertical asymptote of the graph of (5. |
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2
6 1
2. flx)= b. glx)=——
P41 X+ 23
Solutions:
a. Inthis case, there are no common terms in the numerator and denominator. Solving for x in the

denominator in an attempt to find the asymptotes, we end up with x= ./ —1 . Since we cannot
have imaginary numbers in the Cartesian Coordinate System, fhas no vertical asymptotes.

Agnsual, in order to determine the domain of the rational function we have to factor the
denominator. And after making note of the domain. we will look for commeon factors to cancel,
=0 we may as well factor the numerator, if possible;

gy P! C (e-T) (1) xt]
oA S P+ -3 (x-T)(x+3)  x+3

ii.  What we gee in this example ig that the domain is{ x|x#-3andx+#1 } Thus,
the equation of the vertical asymptote is ¥ = —3.
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Horizontal Asymptotes

The horizontal line ¥ = ¢ is a horizontal asymptote of a function fif f{x) approaches the value ¢ as
X —» —o0 or a8 x — . Examples of horizontal asymptotes appear in Figure 3. The graph of a
rational function may intersect a horizontal asymptote, often near the origin.

1 ¥ ¥
1 4 4
2 2 2
{] ...................................... . ﬂ — . D:‘._.;:;:‘. ......... \Nﬂ- ............... .
=5 =il 1
4 4 4
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
Figure 3: Horizontal Asvinptotes
Finding a Horizontal Asymptote
Find the horizontal asymptote, if one exists, of the graph of
x — 12
R(x) = —
4" + x + 1
Since the degree of the numerator, 1, is less than the degree of the denominator, 2,
the rational function R is proper. The line y = 0 1s a horizontal asymptote of the
graph of R. _J
Gr + 1
)= —
5 Sx°—2x+3

The degree in the numerator is less than the degree in the denominator thus the rational function is proper
and the line y = 0 is a horizontal asymptote of the graph R

Lo

In symnbols, f(x) — 0asx — fon,
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A non-vertical, non-horizontal line may also be an asyimptote of a function f Examples of oblique
(or slant) asymptotes appear in Figure 4. Again, the graph of a rational finction may intersect an

oblique asymptote,

Oblique Asymptotes

¥

| SN T - T B S S0

-4 -2 0 2 4
Figure 4: Oblique Asymptotes

on both sides of ¢.

The notation x — ¢ is used in describing the behavior of a graph as x approaches the value ¢ from

the left (the negative side). The notation x — ¢ is used in describing behavior as x approaches ¢
from the right (the positive side). The notation x — ¢ is used in describing behavior that is the same

Asymptote Notation

Figure 5 illustrates how the above notation can be used to describe the behavior of functions.

r“'

Ax) >—mwasx 27
Ax)smasx 2"

vV V

¥ x

g(x) »—masx 2 hix) >2a8x »—o
hix) >2a8x > @

Figure 5: Asymptote Notation
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_] Finding a Horizontal Asymptote
Find the horizontal asymptote, if one exists, of the graph of
x—12
4yt + x + 1

in Since the degree of the numerator, 1, is less than the degree of the denominator, 2,
the rational function R is proper. The line y = {} is a horizontal asymptote of the

graph of R. .J

R(x) =

To see why y = () is a horizontal asymptote of the function R in Example 5, we
investigate the behavior of R as x — — 00 and x — oo. When | x| is very large, the
numerator of R, whichis x — 12, can be approximated by the power function y = x,
while the denominator of R, which is 4x* + x + 1, can be approximated by
the power function y = 4x*. Applying these ideas to R(x), we find

r— 12 X
R(x) = =~ - —50
(%) A +x +1 1 4 4x
'-l"l-u-r;.'ll AS X = =00 g x = X

This shows that the line y = 0 is a horizontal asymptote of the graph of R.

If a rational function R{x) = is improper, that is, if the degree of the

X
_ qlx)
numerator is greater than or equal to the degree of the denominator, we use long
division to write the rational function as the sum of a polynomial f{x) (the quotient)

(r(x) is the remainder). That is, we write

r
plus a proper rational function
r

r(x) r(x)

is a proper rational function. Since 15

where f(x) is a polynomial and
Flx) q(x

—{}as x — —0o0 or as x — o0, As a result,
glx)

glx)

proper,

X
R{x) = E—*_ﬂ{x} a8 X — — 00 oras x — o0

g(x)

The possibilities are listed next.

1. If f(x) = b, a constant, the line v = b is a horizontal asymptote of the graph

of R. Slanted 45 degrees

2. If f(x) =ax + b,a # 0, the line y = ax + [ is an oblique asymptote of the
graph of R.

3. In all other cases, the graph of R approaches the graph of f, and there are no
horizontal or oblique asymptotes.

We illustrate each of the possibilities in Examples 6, 7. and 5.



EX6

Finding a Horizontal or Oblique Asymptote

Find the horizontal or oblique asymptote, if one exists, of the graph of

4 2
It —x

3

H(x) = v -+

Since the degree of the numerator, 4, is greater than the degree of the denominator,
3, the rational function H is improper. To find a horizontal or oblique asymptote, we
use long division.

3x +3
- 13 - X
3xt - 3 + 3x
3 — 1 = 3x
3xt = 30 + 3
2 —3x -3
As a result,
3t — ¥ 2P —3x -3
Hxy=—V———=3x+3+——"-"7"—
() o=+ R S

As ¥ — —00 or as x — od,

As x— —00 or as x — 20, we have H{x)—=3x + 3. We conclude that the graph of
the rational function / has an obligue asymptote v = 3x + 3. |

Tei 4+ 2x - 1
Ax)= x°+ 4x

Since the degree in the numerator is greater than the numerator then do long division.
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EX7

If the degree are equal then divide the coefficient to obtain the horizontal asymptote.

Finding a Horizontal or Oblique Asymptote

Find the horizontal or oblique asymptote, if one exists, of the graph of

R{x)=8x‘—:x+2

Since the degree of the numerator, 2, equals the degree of the denominator, 2, the
rational function R is improper. To find a horizontal or oblique asymptote, we use
long division.

2
4t = 1)8x —x + 2
8x? -2
- x+4
As a result,
Byl —x + 2 —x + 4
Rix) = =2+ —
4x° — 1 4x° — 1
Then. as x — — 00 or as x — 00,
-x+4 -x -l
T |
4x -1  4x  4x

As x — — 00 or as x — 00, we have R(x) — 2. We conclude that y = 2 is a horizontal
asymptote of the graph. .J

In Example 7, notice that the quotient 2 obtained by long division is the quotient
of the leading coefficients of the numerator polynomial and the denominator
polynomial (E),Thm means that we can avoid the long division process for rational

functions where the numerator and denominator are of the same degree and conclude
that the quotient of the leading coefficients will give us the horizontal asymptote.

6 — 3x+2
fAx)y=—F——"7""=
I+ 5¢v— 17

In symbols. flx) - 2asx — +omo.
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EX8 Finding a Horizontal or Oblique Asymptote

Find the horizontal or oblique asvmptote, if one exists, of the graph of

= x4+ 2

Gx)
X =1
n Since the degree of the numerator, 5, is greater than the degree of the denominator,
3, the rational function ¢ is improper. To find a horizontal or oblique asymptote, we
use long division.

20 -1
O 1)28 - 88 + 2
257 - 2x
-+t +2
- + 1
2 + 1
As a result,
. 2¢ — X'+ 2 5 257 + 1
Gla)=————=2x — 1 + —
=1 =1
Then, as x = —00 or as x — o,
20+ 2x
- = — = — =}
x =1 X X

As x— —00 or as x — o0, we have G{x)—2x" — 1. We conclude that, for large
values of | x|, the graph of G approaches the graph of y = 2x* — 1. That is, the graph
of G will look like the graph of y = 2x® — 1 as x— —o0 or x— 20, Since
y = 2x° — 1is not a linear function, G has no horizontal or oblique asymptote. .._J

I -2+ T - ]
Flx)= 1

o+ 19% —3x+ 5
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If the degree in the numerator is greater than the degree in the denominator and it is greater than 1 then the

function is not oblique or horizontal.
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p
SUMMARY  Finding a Horizontal or Oblique Asymptote of a Rational Function
Consider the rational function
plx) ax" + X"+ + o

- q(x) - B X" + by X"+ iy + By

R(x)

in which the degree of the numerator is n and the degree of the denominator is m.

1. If n < m (the degree of the numerator is less than the degree of the denominator), then R is a proper rational
function, and the graph of R will have the horizontal asymptote y = 0 (the x-axis).

2. If n = m (the degree of the numerator is greater than or equal to the degree of the denominator), then R is
improper. Here long division is used.

(a) If m = s (the degree of the numerator equals the degree of the denominator), the quotient obtained will be

" a!l’

a
the number —. and the line v =

L] ™
(b} If n = m + 1 (the degree of the numerator is one more than the degree of the denominator), the quotient
obtained is of the form ax + b (a polynomial of degree 1), and the line y = ax + bis an oblique asymptote.

is a horizontal asvmptote.

(c) If n = m + 2 (the degree of the numerator is two or more greater than the degree of the denominator), the
quotient obtained is a polvnomial of degree 2 or higher, and R has neither a horizontal nor an oblique
asymptote. In this case, for very large values of | x|, the graph of R will behave like the graph of the quotient.

Note: The graph of a rational function either has one horizontal or one oblique asymptote or else has no horizental and no oblique
asvmplole. ]

Equations for Honzontal and Oblique Asymptotcs

Let fix) = % be a rational function, where p is an #* degree polynomial with leading coefficient

a_and g1is an nr* degree polynomial with leading coefficient b

Then:
1. If m < m, the horizontal line y = 0 (the x-axis) 15 the horizontal asymptote for £

i
2. If = m, the horizontal line y = b—” is the horizontal asymptote for .

3. If n=m + L. the line y = g () i= an oblique asymptote for f, where g is the quotient polynomial
obtained by dividing p by g (the remainder polynomial is irrelevant).
4, If n=m+ 1, there 1s no straight-line horzontal or oblique asymptote for f
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Find the equation for the horizontal or obligue asymptote of the following functions.

X+ x' - 27
a  g(x L b h(x)=" =
=X '

42— 15 2

a. Because the munerator has a degree less than the degree of the denominator of g, the asymptote
ig the horizontal line v= (.

b. Because the degree of the munerator iz greater than one plus the degree of the denominator, we
know A has no oblique or horizontal asyimptote.

¥oxt+4 . . A
a flx)= x5 Vertical x = horizontal/oblique y =
ol __
b, z(x)= ‘; ; Vertical x = horizontal’'oblique y =
X — - -
Y +ry—7 — —
c. hix)= ﬁ Vertical x = horirontal’'oblique y =
.-n‘l- -
roxi+4 . . . L .
a flx)=————  Vertical x=|-35 horizontal’'oblique y = |[None
x+ 35

If the degree in the numerator is greater than the degree in the denominator and it is greater than 1 then the
function is not oblique or horizontal.

Zxr—3
b. g(x)= =
“x” Vertical asymptote to make the denominator equal to zero.

The rational equation is proper because the degree for the numerator is less than the degree in the
denominator.

Vertical x=|3-3 horizontal/oblique y = |0

PAx—7 1
c. hlx)y= —— Vertical x=|2 -2 horizontal/oblique y =
2 _ 8 YR

The rational equation is improper because the degree for the numerator is equal to the degree in the
denominator.

Same degrees divide coefficients for “y” horizontal asymptote

“x” Vertical asymptote to make the denominator equal to zero.
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4.3 Properties of rational functions (very brief)

[ EXAMPLE 5 ] Analyzing the Graph of a Rational Function with a Hole

2y —5x +2

Analyze the graph of the rational function: R(x) = T4
X -

Solution  STEP 1: Factor R and obtain
(2x — 1)(x — 2)
- (x + 2)(x = 2)
The domain of Ris {x|x # =2, x # 2}.
STEP 2: In lowest terms,

R(x)

C2x—1
x4+ 2

R{x) x# =2 x#2

1 1
STEP 3: The y-intercept is R(0) = R Plot the point (U, _E)
|
The graph has one x-intercept: >

_2x =1 WZ.\'—I
x+2

1 2
NcarE: R(x) = E{Ex - 1)

l
—+2
2

. 1 . . . -,
Plot the point (5 ﬂ) showing a line with positive slope.

STEP 4: Since x + 215 the only factor of the denominator of R{x} in lowest terms, the
graph has one vertical asymptote, v = —2. However, the rational function is
undefined at both x = 2 and x = —2. Graph the line x = —2 using dashes,

STEP 5: Since the degree of the numerator equals the degree of the denominator,
the graph has a horizontal asymptote. To find it, form the quotient of the
leading coefficient of the numerator, 2, and the leading coefficient of the
denominator, 1. The graph of R has the horizontal asymptote v = 2. Graph
the line v = 2 using dashes.

To find out whether the graph of R intersects the horizontal asvmptote
v = 2, we solve the equation R{x) = 2.

2x — 1
R(x) = x+2 =2
2y =1 =2(x+12)
2x—1=2x+4
_]=4 gl

The graph does not intersect the line y = 2,
STEP 6: Look at the factored expression for R in Step 1. The real zeros of the

. 1 - .. .
numerator and denominator, —2, 5 and 2, divide the x-axis into four intervals:

e (1) () ew

Construct Table 15. Plot the points in Table 15.
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3 =2 1/2 2
X
1 1
Interval {—o0, —2) —2,5 5,2 (2, o)
Number chosen -3 =] 1 3
Value of R R(-3) =7 R(—1) = —3 R(1) = 15 R(3) =1
Location of graph Above x-axis Below x-axis Above x-axis Above x-axis
Point on graph {—3,7) {(—1.-3) (1.%) (3,1}
STEr 7: » From Table 15 we know that the graph of R is above the x-axis for
x < —2
From Step 5 we know that the graph of R does not intersect the
COMMENT The coordinates of the hole asymptote v = 2, Therefore, the graph of R will approach v = 2 from
were obbained by evaluating K in lowsst above as x — —o0 and will approach the vertical asymptote x = =2 at

2x—1

the top from the left.

terms at 2. K in lowest terms is
22)-1 3xT
= [ ]

. . . 1
Since the graph of R is below the x-axis for =2 < x < > the graph of B
2+2 4 will approach x = —2 at the bottom from the right.

which, atx = 2, is

, . . . 1
Finally, since the graph of R is above the y-axis for x = 3 and does not

intersect the horizontal asymptote v = 2, the graph of R will approach
v = 2 from below as x — oo, See Figure 40(a).

STEP 8: See Figure 40(b) for the complete graph. Since R is not defined at 2, there is

3
a hole at the point (2, 3)

Figure 40
| ¥ |
/ lx=-2,] lx= -2 al
3,7 I 3,7 I
(~3.7)q | (-3.7)
| - | -
| E | 6
| |
I 4 I
< L :
——————————— - 2 A3, 1) - ¥ =2 -
|{|:|_ _l} " I
v T3 \
1 1 | I )! b 1 1 - 1 1 |
-4 -3 -2 -1 T \\1 2 3 X -4 -3 -2
l 2| (L0) l
| 2" |
| |
| |
A .
L (~1,-3) I
(a)
Iﬁ Exploration
HE 2 _ gy
Graph R(x) = Zxxzis::"{ Do you see the hole at (2. %)?TRACE along the graph. Did you obtain an
ERROR atx = 27 Are you convinced that an algebraic\anal.ysis of a rational function is required in order
to accurately interpret the graph obtained with a graphing utility? J

As Example 5 shows, the zeros of the denominator of a rational function give
rise to either vertical asymptotes or holes in the graph.
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4.4 Rational Inequalities (very brief)

Solving a rational inequality using a graph. // olving a rational inequality algebraically.
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4.5 The real zeros of polynomial functions
Rational zeros theorem (RZT)

Use the Rational Zeros Theorem to List the Potential Rational
Zeros of a Polynomial Function

The next result, called the Rational Zeros Theorem, provides information about the
rational zeros of a polynomial with integer coefficients.

Rational Zeros Theorem

Let fbe a polynomial function of degree 1 or higher of the form

f(x)=ax"+a,x" '+ - +ax+ay a,#0, ag#0

where each coefficient is an integer. If —, in lowest terms, is a rational zero of f,
g

then p must be a factor of a; and g must be a factor of a,,. _J

SUMMARY  Steps for Finding the Real Zeros of a Polynomial Function

Ster 1: Use the degree of the polynomial to determine the maximum number of real zeros.
Ster 2: (a) If the polynomial has integer coefficients, use the Rational Zeros Theorem to identify those rational
numbers that potentially could be zeros.
(b) Use substitution, synthetic division, or long division to test each potential rational zero. Each time that
a zero (and thus a factor) is found, repeat Step 2 on the depressed equation.

In attempting to find the zeros, remember to use (if possible) the factoring techniques that you already
know (special products, factoring by grouping, and so on).

Special products Factoring by groups

SPECIAL PRODUCT PATTERNS Factor the polynomial x3 — 3x2 — 36x + 108.

Sum and Difference Example Solution

(@a+bla—-b=a2-b2 (x+6)x—6)= xZ 36 x3 — 3x2 — 36x + 108

Square of a Binomial Example = (x> —3x2)+( —36x + 108 ) Group terms.

(@+b2=a2+2ab+ b2 (x+ 532 =x%(x—3)+(—36)( x—3) Factor each group.
= X2+ 10x + 25 =x2-36)(x—3) Distributive property

(@ = b)? = a® — 2ab + b* (2"‘3?§ =(Xx+6) x—6) x—3) Difference of two
= 4xc —12x + 9 squares

Cube of a Binomial Example

(@ + b3 =a3+ 3a% (x+3PF= x7 + 02

+ 3ab? + b2 + 27 x+ 27
(a—b)3= a3 —3a% x—4p@=x3- 12x2

+ 3ab2 — b3 + 48x — 64
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[ EXAMPLE 4 |

How to Find the Real Zeros of a Polynomial Function

Find the real zeros of the polynomial function f(x) = 2x° + 11x> — 7x — 6. Write
fin factored form.

Step-by-Step Solution

Step 1: Use the degree of the
polynomial to determing the
maximum number of zeros.

Since f1s a polynomial of degree 3, there are at most three real zeros.

Step 2: If the polynomial has
integer coefficients, use the
Rational Zeros Theorem to identify
those rational numbers that
potentially can be zeros. Use the
Factor Thearem to determine if
each potential rational zero is a
zero. If it is, use synthetic division
or long division to factor the
polynomial function. Repeat Step 2
until all the zeros of the polynomial
function have been identified and
the polynomial function is
completely factored.

List the potential rational zeros obtained in Example 3:

+1, £2, £3, +6, :I:%. j:%
From our list of potential rational zeros, we will test 6 to determine if it is a zero of f0
Because f(6) = 780 = 0, we know that 6 is not a zero of f. Now, let’s test if —61s a
zero. Because f(—6) = 0, we know that —6 is a zero and x — (—6) = x + 6is a
factor of f. Use long division or synthetic division to factor f. (We will not show the
division here, but you are encouraged to verify the results shown.) After dividing f
by x + 6, the quotient is 2x* — x — 1,50

Flx)y =2+ 1127 = Tx — 6
=(x+6)(2¢° —x— 1)

Now any solution of the equation 2x* — x = 1 = 0 will be a zero of f. We call the
equation 2x* — x — 1 = 0 a depressed equation of . Because any solution to the
equation 2x* — x — 1 = 0 is a zero of f, we work with the depressed equation to
find the remaining zeros of f.

The depressed equation 2x* — x —1 =0 is a quadratic equation with
discriminant B> — dac = (—1)* — 4(2)(—1) = 9 = 0. The equation has two real
solutions, which can be found by factoring.

2 —x—1=(2x+1)(x—-1)=0
2x+1 =10 or 0

xr—1

[y

X =—-—— ar X

1
The zeros of fare —6, — > and 1.
We completely factor f as tollows:

flx) =2+ 11x* = Tx — 6 = (x + 6)(2x* — x — 1)
={x+0)(2x+ 1){x—1)

of solutions.

DISCRIMINANT OF A QUADRATIC EQUATION

The discriminant determines the number and type

b2 — 4ac >
b2 — d4ac =
b2 — 4ac <

0 2 real solutions

0 1 real

0 2 Imaginary solutions

solution




