CHAPTER 5 SULLIVAN $9^{\text {th }}$ Ed

5.3 \& 5.4 Logarithmic Functions and their graphs

Recall that a one-to-one function $y=f(x)$ has an inverse function that is defined (implicitly) by the equation $x=f(y)$. In particular, the exponential function $y=f(x)=a^{x}$, where $a>0$ and $a \neq 1$, is one-to-one and hence has an inverse function that is defined implicitly by the equation

$$
x=a^{y}, \quad a>0, \quad a \neq 1
$$

This inverse function is so important that it is given a name, the logarithmic function.
The logarithmic function to the base \boldsymbol{a}, where $a>0$ and $a \neq 1$, is denoted by $y=\log _{a} x$ (read as " y is the logarithm to the base a of $x "$) and is defined by

$$
y=\log _{a} x \text { if and only if } x=a^{y}
$$

The domain of the logarithmic function $y=\log _{a} x$ is $x>0$.

$$
\begin{gathered}
\log _{a} x=y \leftrightarrow x=a^{y} \\
\text { A logarithm is an exponent! }
\end{gathered}
$$

- Remember: Logarithmic functions are inverses of exponential functions.

The inverse of $f(x)=a^{x}$ is given by $f^{-1}(x)=\log _{a} x$

As this definition illustrates, a logarithm is a name for a certain exponent. So, $\log _{a} x$ represents the exponent to which a must be raised to obtain x.

Example 1

Relating Logarithms to Exponents

(a) If $y=\log _{3} x$, then $x=3^{y}$. For example, the logarithmic statement $4=\log _{3} 81$ is equivalent to the exponential statement $81=3^{4}$.
(b) If $y=\log _{5} x$, then $x=5^{y}$. For example, $-1=\log _{5}\left(\frac{1}{5}\right)$ is equivalent to $\frac{1}{5}=5^{-1}$.

Change Exponential Statements to Logarithmic Statements and Logarithmic Statements to Exponential Statements

We can use the definition of a logarithm to convert from exponential form to logarithmic form, and vice versa, as the following two examples illustrate.

Convert each of the following to a logarithmic equation.

a) $25=5^{x}$
b) $e^{v}=30$ $\log _{5} 25=x$
$\log _{e} 30=w$

OTHER EXAMPLES
a) $\log _{7} 343=3$

The logarithm is the exponent. $\log _{7} 343=3773$

The base remains the same.
b) $\log _{b} R=12$

$$
\log _{b} R=12 \quad b^{12}=R
$$

Example 2
Changing Logarithmic Statements to Exponential Statements
Change each logarithmic statement to an equivalent statement involving an exponent.
(a) $\log _{a} 4=5$
(b) $\log _{e} b=-3$
(c) $\log _{3} 5=c$
(a) If $\log _{a} 4=5$, then $a^{5}=4$.
(b) If $\log _{e} b=-3$, then $e^{-3}=b$.
(c) If $\log _{3} 5=c$, then $3^{c}=5$.

Example 3

Changing Exponential Statements to Logarithmic Statements

Change each exponential statement to an equivalent statement involving a logarithm.
(a) $1.2^{3}=m$
(b) $e^{b}=9$
(c) $a^{4}=24$

Use the fact that $y=\log _{a} x$ and $x=a^{y}$, where $a>0$ and $a \neq 1$, are equivalent.
(a) If $1.2^{3}=m$, then $3=\log _{1.2} m$.
(b) If $e^{b}=9$, then $b=\log _{e} 9$.
(c) If $a^{4}=24$, then $4=\log _{a} 24$.

| $\mathbf{y}=\log _{\mathbf{b}} \mathbf{x}$ |
| :---: | :---: | :---: |
| Logarithmic |
| Equation |\quad| Equivalent |
| :---: |
| Exponential |
| Equation |\quad| Solution |
| :---: |
| $y=\log _{2} 16$ |
| $y=\log _{2}\left(\frac{1}{2}\right)$ |

Evaluate Logarithmic Expressions

To find the exact value of a logarithm, we write the logarithm in exponential notation using the fact that $y=\log _{a} x$ is equivalent to $a^{y}=x$ and use the fact that if $a^{u}=a^{v}$, then $u=v$.

Example4

Finding the Exact Value of a Logarithmic Expression

Find the exact value of:
(a) $\log _{2} 16$
(a) To evaluate $\log _{2} 16$, think "2 raised to what power yields 16 ." So,

$$
\begin{array}{rlrl}
y & =\log _{2} 16 & & \\
2^{y} & =16 & & \text { Change to exponential } \\
& & \text { form. } \\
2^{y} & =2^{4} & & 16=2^{4} \\
y & =4 & & \text { Equate exponents. }
\end{array}
$$

(b) $\log _{3} \frac{1}{27}$

Therefore, $\log _{2} 16=4$.
(b) To evaluate $\log _{3} \frac{1}{27}$, think " 3 raised to what power yields $\frac{1}{27}$." So,

$$
y=\log _{3} \frac{1}{27}
$$

$$
3^{y}=\frac{1}{27}
$$

Change to exponential

$$
3^{y}=3^{-3} \quad \frac{1}{27}=\frac{1}{3^{3}}=3^{-3}
$$

$$
y=-3 \quad \text { Equate exponents. }
$$

Therefore, $\log _{3} \frac{1}{27}=-3$.

Determine the Domain of a Logarithmic Function

The logarithmic function $y=\log _{a} x$ has been defined as the inverse of the exponential function $y=a^{x}$. That is, if $f(x)=a^{x}$, then $f^{-1}(x)=\log _{a} x$. Based on the discussion given in Section 5.2 on inverse functions, for a function f and its inverse f^{-1}, we have

$$
\text { Domain of } f^{-1}=\text { Range of } f \quad \text { and } \quad \text { Range of } f^{-1}=\text { Domain of } f
$$

Consequently, it follows that
Domain of the logarithmic function $=$ Range of the exponential function $=(0, \infty)$
Range of the logarithmic function $=$ Domain of the exponential function $=(-\infty, \infty)$
In the next box, we summarize some properties of the logarithmic function:

$$
\begin{aligned}
& y=\log _{a} x \quad \text { (defining equation: } \quad x=a^{y} \text {) } \\
& \text { Domain: } 0<x<\infty \quad \text { Range: } \quad-\infty<y<\infty
\end{aligned}
$$

The domain of a logarithmic function consists of the positive real numbers, so the argument of a logarithmic function must be greater than zero.

Example 5

Finding the Domain of a Logarithmic Function

Find the domain of each logarithmic function.
(a) $F(x)=\log _{2}(x+3)$
(b) $g(x)=\log _{5}\left(\frac{1+x}{1-x}\right)$
(c) $h(x)=\log _{1 / 2}|x|$
(a) The domain of F consists of all x for which $x+3>0$, that is, $x>-3$. Using interval notation, the domain of f is $(-3, \infty)$.
(b) The domain of g is restricted to

$$
\frac{1+x}{1-x}>0
$$

Solving this inequality, we find that the domain of g consists of all x between -1 and 1 , that is, $-1<x<1$ or, using interval notation, $(-1,1)$.

Facts about the Graph of a Logarithmic
Function $f(x)=\log _{b} x$

1. The x-intercept of the graph is 1 . There is no y-intercept.
2. The y-axis is a vertical asymptote of the graph.
3. A logarithmic function is decreasing if 0 $<\mathrm{b}<1$ and increasing if $\mathrm{b}>1$.
4. The graph is smooth and continuous, with no corners or gaps.

$\mathbf{y}=\log _{b} \mathbf{x}$ has the following properties

- Domain $(0, \infty)$, Range $(-\infty, \infty)$
- It passes through the point $(1,0)$
- It passes through the point (b, 1)
- The y - axis is an asymptote.
- If $b>1$, it is an increasing function
- If $0<b<1$, it is a decreasing function

Transformations Involving Logarithmic Functions

Vertical	$\mathrm{f}(\mathrm{x})=\mathrm{c}+\log _{\mathrm{b}} \mathrm{x}$	Up c units
Translation	$\mathrm{f}(\mathrm{x})=-\mathrm{c}+\log _{\mathrm{b}} \mathrm{x}$	Down c units
Horizontal	$\mathrm{f}(\mathrm{x})=\log _{\mathrm{b}}(\mathrm{x}+\mathrm{c})$	Left c units
Translation	$\mathrm{f}(\mathrm{x})=\log _{\mathrm{b}}(\mathrm{x}-\mathrm{c})$	Right c units
Stretching:	$\mathrm{f}(\mathrm{x})=\mathrm{c} \log _{\mathrm{b}} \mathrm{x}$	Stretches by c
Vertical	f	
Horizontal	$\mathrm{f}(\mathrm{x})=\log _{\mathrm{b}} \mathrm{cx}$	Stretches by $1 / \mathrm{c}$
Reflection	$\mathrm{f}(\mathrm{x})=\log _{\mathrm{b}}(-\mathrm{x})$ $\mathrm{f}(\mathrm{x})=-\log _{\mathrm{b}} \mathrm{x}$	About y -axis About x -axis

Characteristics of the Graphs of Logarithmic Functions of the Form $f(x)=\log _{\mathrm{a}} \mathrm{x}$

- The x -intercept is 1 . There is no y -intercept.
- The y-axis is a vertical asymptote. $(x=0)$
- If $0<a<1$, the function is decreasing. If $b>1$, the function is increasing.
- The graph is smooth and continuous. It has no sharp corners or edges.

LOGARITHMIC FUNCTION $\quad f(x)=\log _{a} x, \quad a>1$
Domain: $(0, \infty) \quad$ Range: $(-\infty, \infty)$

X	\%1	
. 5	-2	
$\frac{1}{2}$	0^{1}	
$\frac{2}{4}$	$\frac{1}{2}$	
${ }_{16}$	$\frac{3}{3}$	
V1日log(x) $/ \log (2)$		

$$
Y_{1}=\log _{2} X=\frac{\log X}{\log 2}
$$

FIGURE 36

- $f(x)=\log _{a} x, a>1$, is increasing and continuous on its entire domain, $(0, \infty)$.
- The y-axis is a vertical asymptote as $x \rightarrow 0$ from the right.
- The graph goes through the points $\left(a^{-1},-1\right),(1,0)$, and $(a, 1)$.

LOGARITHMIC FUNCTION $\quad f(x)=\log _{a} x, \quad 0<a<1$
Domain: $(0, \infty) \quad$ Range: $(-\infty, \infty)$

FIGURE 37

- $f(x)=\log _{a} x, 0<a<1$, is decreasing and continuous on its entire domain, $(0, \infty)$.
- The y-axis is a vertical asymptote as $x \rightarrow 0$ from the right.
- The graph goes through the points $(a, 1),(1,0)$, and $\left(a^{-1},-1\right)$.

Graphs Logs Func 0<a<1

- Below are typical shapes for such graphs where $0<a<1$

Properties of the Logarithmic Function $f(x)=\log _{a} x$

1. The domain is the set of positive real numbers or $(0, \infty)$ using interval notation; the range is the set of all real numbers or $(-\infty, \infty)$ using interval notation.
2. The x-intercept of the graph is 1 . There is no y-intercept.
3. The y-axis $(x=0)$ is a vertical asymptote of the graph.
4. A logarithmic function is decreasing if $0<a<1$ and increasing if $a>1$.
5. The graph of f contains the points $(1,0),(a, 1)$, and $\left(\frac{1}{a},-1\right)$.
6. The graph is smooth and continuous, with no corners or gaps.

The graphs of $y=\log _{a} x$ in Figures 30 (a) and (b) lead to the following properties. Since exponential functions and logarithmic functions are inverses of each other, the graph of the logarithmic function $y=\log _{a} x$ is the reflection about the line $y=x$ of the graph of the exponential function $y=a^{x}$, as shown in Figure 30.

Figure 30

For example, to graph $y=\log _{2} x$, graph $y=2^{x}$ and reflect it about the line $y=x$. See Figure 31. To graph $y=\log _{1 / 3} x$, graph $y=\left(\frac{1}{3}\right)^{x}$ and reflect it about the line $y=x$. See Figure 32 .
Figure 31

Graph $f(x)=2^{x}$ and $g(x)=\log _{2} x$ in the same rectangular coordinate system.

Solution

We now sketch the basic exponential graph. The graph of the inverse (logarithmic) can also be drawn by reflecting the graph of $f(\boldsymbol{x})=2^{x}$ over the line $\mathrm{y}=\mathrm{x}$.

Graph $f(\boldsymbol{x})=2^{x}$ and $g(\boldsymbol{x})=\log _{2} \boldsymbol{x}$ in the same rectangular coordinate system.

Solution We first set up a table of coordinates for $f(\boldsymbol{x})=2^{x}$. Reversing these coordinates gives the coordinates for the inverse function, $g(\boldsymbol{x})=\log _{2} \boldsymbol{x}$.

x	-2	-1	0	1	2	3
$f(x)=2^{x}$	$1 / 4$	$1 / 2$	1	2	4	8
$g(x)=\log _{2} \mathrm{x}$	-2	-1	0	1	2	3

Reverse coordinates.

The graphs of logarithmic functions are similar for different values of a.

$$
f(x)=\log _{a} x \quad(a>1)
$$

Graph of $f(x)=\log _{a} x(a>1)$

1. domain $(0, \infty)$
2. range $(-\infty,+\infty)$
3. x-intercept $(1,0)$
4. vertical asymptote

$$
x=0 \text { as } x \rightarrow 0^{+} f(x) \rightarrow-\infty
$$

5. increasing
6. continuous
7. one-to-one
8. reflection of $y=a^{x}$ in $y=x$

Graph $f(x)=\log _{2} x$
Since the logarithm function is the inverse of the exponential function of the same base, its graph is the reflection of the exponential function in the line $y=x$.

x	2^{x}
-2	$\frac{1}{4}$
-1	$\frac{1}{2}$
0	1
1	2
2	4
3	8

horizontal asymptote $y=0$

If the base of a logarithmic function is the number e, then we have the natural logarithm function. This function occurs so frequently in applications that it is given a special symbol, \ln (from the Latin, logarithmus naturalis). That is,

$$
\begin{equation*}
y=\ln x \quad \text { if and only if } \quad x=e^{y} \tag{1}
\end{equation*}
$$

$y=\log _{6} x$ is written $y=\ln x$

Summary Logs Base "e" and In

- $\log _{e} x$ means $\ln x$
- These are called natural logarithms
- $y=\ln x$ is the inverse of $y=e^{x}$
- The domain of $y=\ln x$ is $(0, \infty)$
- The range is the interval $(-\infty, \infty)$

Since $y=\ln x$ and the exponential function $y=e^{x}$ are inverse functions, we can obtain the graph of $y=\ln x$ by reflecting the graph of $y=e^{x}$ about the line $y=x$. See Figure 33.

Using a calculator with an \ln key, we can obtain other points on the graph of $f(x)=\ln x$. See Table 7.

Table 7 | \boldsymbol{x} | $\ln \boldsymbol{x}$ |
| :---: | :---: |
| $\frac{1}{2}$ | -0.69 |
| | 0.69 |
| | 1.10 |

Example 6

Graphing a Logarithmic Function and Its Inverse

(a) Find the domain of the logarithmic function $f(x)=-\ln (x-2)$.
(b) Graph f.
(c) From the graph, determine the range and vertical asymptote of f.
(d) Find f^{-1}, the inverse of f.
(e) Find the domain and the range of f^{-1}.
(f) Graph f^{-1}.
(a) The domain of f consists of all x for which $x-2>0$ or, equivalently, $x>2$. The domain of f is $\{x \mid x>2\}$ or $(2, \infty)$ in interval notation.
(b) To obtain the graph of $y=-\ln (x-2)$, we begin with the graph of $y=\ln x$ and use transformations. See Figure 34.

(c) The range of $f(x)=-\ln (x-2)$ is the set of all real numbers. The vertical asymptote is $x=2$. [Do you see why? The original asymptote $(x=0)$ is shifted to the right 2 units.]
(d) To find f^{-1}, begin with $y=-\ln (x-2)$. The inverse function is defined (implicitly) by the equation

$$
x=-\ln (y-2)
$$

Proceed to solve for y.

$$
\begin{aligned}
-x & =\ln (y-2) & & \text { Isolate the logarithm. } \\
e^{-x} & =y-2 & & \text { Change to an exponential statement. } \\
y & =e^{-x}+2 & & \text { Solve for } y .
\end{aligned}
$$

The inverse of f is $f^{-1}(x)=e^{-x}+2$.
(e) The domain of f^{-1} equals the range of f, which is the set of all real numbers, from part (c). The range of f^{-1} is the domain of f, which is $(2, \infty)$ in interval notation.
(f) To graph f^{-1}, use the graph of f in Figure 34(c) and reflect it about the line $y=x$. See Figure 35. We could also graph $f^{-1}(x)=e^{-x}+2$ using transformations.

Graphs of Logs
If the base of a logarithmic function is the number 10 , then we have the common logarithm function. If the base a of the logarithmic function is not indicated, it is understood to be 10 . That is,

$$
y=\log x \text { if and only if } x=10^{y}
$$

Since $y=\log x$ and the exponential function $y=10^{x}$ are inverse functions, we can obtain the graph of $y=\log x$ by reflecting the graph of $y=10^{x}$ about the line $y=x$. See Figure 36 .

Figure 36

Example 7

Graphing a Logarithmic Function and Its Inverse

(a) Find the domain of the logarithmic function $f(x)=3 \log (x-1)$.
(b) Graph f.
(c) From the graph, determine the range and vertical asymptote of f.
(d) Find f^{-1}, the inverse of f.
(e) Find the domain and the range of f^{-1}.
(f) Graph f^{-1}.
(a) The domain of f consists of all x for which $x-1>0$ or, equivalently, $x>1$. The domain of f is $\{x \mid x>1\}$ or $(1, \infty)$ in interval notation.
(b) To obtain the graph of $y=3 \log (x-1)$, begin with the graph of $y=\log x$ and use transformations. See Figure 37.

(a) $y=\log x$
(b) $y=\log (x-1)$
(c) $y=3 \log (x-1)$
(c) The range of $f(x)=3 \log (x-1)$ is the set of all real numbers. The vertical asymptote is $x=1$.
(d) Begin with $y=3 \log (x-1)$. The inverse function is defined (implicitly) by the equation

$$
x=3 \log (y-1)
$$

Proceed to solve for y.

$$
\begin{aligned}
\frac{x}{3} & =\log (y-1) & & \text { Isolate tho logarithm. } \\
10^{x / 3} & =y-1 & & \text { Change to an exponential statement. } \\
y & =10^{x / 3}+1 & & \text { Solve for } y .
\end{aligned}
$$

The inverse of f is $f^{-1}(x)=10^{x / 3}+1$.
(e) The domain of f^{-1} is the range of f, which is the set of all real numbers, from part (c). The range of f^{-1} is the domain of f, which is $(1, \infty)$ in interval notation.
(f) To graph f^{-1}, we use the graph of f in Figure 37(c) and reflect it about the line $y=x$. See Figure 38. We could also graph $f^{-1}(x)=10^{x / 3}+1$ using transformations.

Figure 38

Comparing Exponential and Logarithmic Functions

LOGARITHMIIC FUNCTION
EXPONENTIAL FUNCTION
$x=a^{y}$
$f^{-1}(x)=\log _{4} x$
$a>1$
Continuous
One-to-one
Domain: All positive real numbers, $(0, \infty)$
Range: All real numbers, $(-\infty, \infty)$
Increasing
Vertical asymptote is y-axis:

$$
\left(\log _{a} x \rightarrow-\infty \text { as } x \rightarrow 0^{\frac{1}{2}}\right)
$$

x-intercept: $(1,0)$
There is no y-intercept.
 real numbers, $(0, \infty)$
Increasing
Horizontal asymptote is x-axis:

$$
\left(a^{x} \rightarrow 0 \text { as } x \rightarrow-\infty\right)
$$

y-intercept: $(0,1)$
There is no x-intercept.

Example 8

Solving Logarithmic Equations

Solve:
(a) $\log _{3}(4 x-7)=2$
(b) $\log _{x} 64=2$
(a) We can obtain an exact solution by changing the logarithmic equation to exponential form.

$$
\begin{aligned}
\log _{3}(4 x-7) & =2 \\
4 x-7 & =3^{2} \quad \text { Change to exponential form using } y=\log _{x} \mathrm{x} \\
4 x-7 & =9 \quad \text { means } a^{y}=x \\
4 x & =16 \\
x & =4
\end{aligned}
$$

$\sqrt{\text { Check: }} \log _{3}(4 x-7)=\log _{3}(4 \cdot 4-7)=\log _{3} 9=2 \quad 3^{2}=9$
The solution set is $\{4\}$.
(b) We can obtain an exact solution by changing the logarithmic equation to exponential form.

$$
\begin{aligned}
\log _{x} 64 & =2 & & \\
x^{2} & =64 & & \text { Change to exponential form. } \\
x & = \pm \sqrt{64}= \pm 8 & & \text { Square Root Method }
\end{aligned}
$$

The base of a logarithm is always positive. As a result, we discard -8 . We check the solution 8 .

Check: $\quad \log _{8} 64=2 \quad 8^{2}=64$
The solution set is $\{8\}$.

Example 9

Using Logarithms to Solve an Exponential Equation

Solve: $e^{2 x}=5$
We can obtain an exact solution by changing the exponential equation to logarithmic form.

$$
\begin{array}{rlrl}
e^{2 x} & =5 & & \\
\ln 5 & =2 x & & \text { Change to logarithmic form using the } \\
& & \text { fact that if } d^{\prime}=\times \text { then } y=\ln x . \\
x & =\frac{\ln 5}{2} & & \text { Exact solution } \\
& \approx 0.805 & & \text { Approximate solution }
\end{array}
$$

The solution set is $\left\{\frac{\ln 5}{2}\right\}$.

PROPERTIES OF LOGARITHMIC FUNCTIONS

$f(x)=\log _{a} x, \quad a>1$	
$\left(y=\log _{a} x\right.$ means $\left.x=a^{y}\right)$	Domain: the interval ($0, \infty$); Range: the interval $(-\infty, \infty)$
	x-intercept: $1 ; y$-intercept: none; vertical asymptote: $x=0(y$-axis $)$; increasing; one-to-one
	See Figure 39(a) for a typical graph.
$f(x)=\log _{a} x, \quad 0<a<1$	Domain: the interval $(0, \infty)$; Range: the interval $(-\infty, \infty)$
$\left(y=\log _{a} x\right.$ means $\left.x=a^{y}\right)$	x-intercept: $1 ; y$-intercept: none; vertical asymptote: $x=0(y$-axis $) ;$ decreasing; one-to-one
	See Figure 39(b) for a typical graph.

