Inverse of a Relation

Let R be a relation. The inverse of \boldsymbol{R}, denoted R^{-1}, is the set

$$
R^{-1}=\{(b, a) \mid(a, b) \in R\} .
$$

Caution!

We are faced with another example of reuse of notation. f^{-1} does not stand for $\frac{1}{f}$! We use an exponent of -1 to indicate the reciprocal of a number or an algebraic expression, but when applied to a function or a relation it stands for the inverse relation.

The Horizontal Line Test

Let f be a function. We say that the graph of f passes the horizontal line test if every horizontal line in the plane intersects the graph no more than once.

Finding Inverse Functions

Let f be a one-to-one function, and assume that f is defined by a formula. To find a formula for f^{-1}, perform the following steps:

1. Replace $f(x)$ in the definition of f with the variable y. The result is an equation in x and y that is solved for y at this point.
2. Interchange x and y in the equation.
3. Solve the new equation for y.
4. Replace the y in the remaining equation with $f^{-1}(x)$.
b. $\quad h(x)=\frac{x-3}{2} \quad$ We will use the algorithm for this function.

$$
y=\frac{x-3}{2} \quad \text { The first step is to replace } h(x) \text { with } y .
$$

$$
x=\frac{y-3}{2} \quad \text { The second step is to interchange } x \text { and } y \text { in the equation. }
$$

$$
2 x=y-3
$$

\square
Cross multiply

$$
y=2 x+3
$$

We now have to solve the equation for y.

$$
h^{-1}(x)=2 x+3
$$

The last step is to name the formula h^{-1}.

One-to-One Function

A function for which every element of the range of the function corresponds to exactly one element of the domain. One-to-one is often written 1-1.

Test for 1-1 tumetions: If $f(a)=f(b)$ implies that $a=b$, then f is 1-1.
Exmple: \quad I $g(x)=3 x-2$ ofe-to-0ine?
see if $g(a)=g(b)$ implies that $a=b$.

$$
3 a-2=3 b-2
$$

$3 a=3 b$
$a=b$
Thus g is 1-1.

Horizontal-line Test

If every horizontal line intersects the graph of a function f in at most one point, then f is one-to-one.

The reason that this test works can be seen in Figure 9, where the horizontal line $y=h$ intersects the graph at two distinct points, $\left(x_{1}, h\right)$ and $\left(x_{2}, h\right)$. Since h is the image of both x_{1} and x_{2} and $x_{1} \neq x_{2}, f$ is not one-to-one. Based on Figure 9, we can state the horizontal-line test in another way: If the graph of any horizontal line intersects the graph of a function f at more than one point, then f is not one-to-one.

Figure 9
$f\left(x_{1}\right)=f\left(x_{2}\right)=h$ and $x_{1} \neq x_{2} ; f$ is not a one-to-one function.

Using the Horizontal-line Test

For each function, use its graph to determine whether the function is one-to-one.
(a) $f(x)=x^{2}$
(b) $g(x)=x^{3}$

Figure 10

(a) A horizontal line intersects the graph twice; f is not one-to-one

(b) Every horizontal line intersects the graph exactly once; g is one-to-one
(a) Figure 10(a) illustrates the horizontal-line test for $f(x)=x^{2}$. The horizontal line $y=1$ intersects the graph of f twice, at $(1,1)$ and at $(-1,1)$, so f is not one-to-one.
(b) Figure 10(b) illustrates the horizontal-line test for $g(x)=x^{3}$. Because every horizontal line intersects the graph of g exactly once, it follows that g is one-to-one.

Finding the Inverse of a Function Defined by a Set of Ordered Pairs

Find the inverse of the following one-to-one function:

$$
\{(-3,-27),(-2,-8),(-1,-1),(0,0),(1,1),(2,8),(3,27)\}
$$

State the domain and the range of the function and its inverse.
The inverse of the given function is found by interchanging the entries in each ordered pair and so is given by

$$
\{(-27,-3),(-8,-2),(-1,-1),(0,0),(1,1),(8,2),(27,3)\}
$$

The domain of the function is $\{-3,-2,-1,0,1,2,3\}$. The range of the function is $\{-27,-8,-1,0,1,8,27\}$. The domain of the inverse function is $\{-27,-8,-1,0$, $1,8,27\}$. The range of the inverse function is $\{-3,-2,-1,0,1,2,3\}$.
Figure $\mathbf{1 1}$

Domain of $f$$\quad$| Remember, if f is a one-to-one function, it has an inverse function, f^{-1}. See |
| :--- |
| Figure 11. |
| Based on the results of Example 4 and Figure 11 , two facts are now apparent |
| about a one-to-one function f and its inverse f^{-1}. |

Verifying Inverse Functions

Verify that the inverse of $f(x)=\frac{1}{x-1}$ is $f^{-1}(x)=\frac{1}{x}+1$. For what values of x is $f^{-1}(f(x))=x$? For what values of x is $f\left(f^{-1}(x)\right)=x$?

The domain of f is $\{x \mid x \neq 1\}$ and the domain of f^{-1} is $\{x \mid x \neq 0\}$. Now

$$
f^{-1}(f(x))=f^{-1}\left(\frac{1}{x-1}\right)=\frac{1}{\frac{1}{x-1}}+1=x-1+1=x \quad \text { provided } x \neq 1
$$

$$
f\left(f^{-1}(x)\right)=f\left(\frac{1}{x}+1\right)=\frac{1}{\frac{1}{x}+1-1}=\frac{1}{\frac{1}{x}}=x \quad \text { provided } x \neq 0
$$

Obtain the Graph of the Inverse Function from the Graph of the Function

Suppose that (a, b) is a point on the graph of a one-to-one function f defined by $y=f(x)$. Then $b=f(a)$. This means that $a=f^{-1}(b)$, so (b, a) is a point on the graph of the inverse function f^{-1}. The relationship between the point (a, b) on f and the point (b, a) on f^{-1} is shown in Figure 13. The line segment with endpoints (a, b) and (b, a) is perpendicular to the line $y=x$ and is bisected by the line $y=x$. (Do you see why?) It follows that the point (b, a) on f^{-1} is the reflection about the line $y=x$ of the point (a, b) on f.

The graph of a one-to-one function f and the graph of its inverse f^{-1} are symmetric with respect to the line $y=x$.

Figure 14 illustrates this result. Notice that, once the graph of f is known, the graph of f^{-1} may be obtained by reflecting the graph of f about the line $y=x$.

Graphing the Inverse Function

The graph in Figure 15(a) is that of a one-to-one function $y=f(x)$. Draw the graph of its inverse.

Begin by adding the graph of $y=x$ to Figure 15(a). Since the points $(-2,-1),(-1,0)$, and $(2,1)$ are on the graph of f, the points $(-1,-2),(0,-1)$, and $(1,2)$ must be on the graph of f^{-1}. Keeping in mind that the graph of f^{-1} is the reflection about the line $y=x$ of the graph of f, draw f^{-1}. See Figure 15(b).

Find the Inverse of a Function Defined by an Equation

The fact that the graphs of a one-to-one function f and its inverse function f^{-1} are symmetric with respect to the line $y=x$ tells us more. It says that we can obtain f^{-1} by interchanging the roles of x and y in f. Look again at Figure 14. If f is defined by the equation

$$
y=f(x)
$$

then f^{-1} is defined by the equation

$$
x=f(y)
$$

The equation $x=f(y)$ defines f^{-1} implicitly. If we can solve this equation for y, we will have the explicil form of f^{-1}, that is,

$$
y=f^{-1}(x)
$$

Let's use this procedure to find the inverse of $f(x)=2 x+3$. (Since f is a linear function and is increasing, we know that f is one-to-one and so has an inverse function.)

EXAMPLE 8 How to Find the Inverse Function

Find the inverse of $f(x)=2 x+3$. Graph f and f^{-1} on the same coordinate axes.

Step-by-Step Solution

Step 1: Replace $f(x)$ with y. In $y=f(x)$, interchange the variables x and y to obtain $x=f(y)$. This equation defines the inverse function f^{-1} implicitly.

Replace $f(x)$ with y in $f(x)=2 x+3$ and obtain $y=2 x+3$. Now interchange the variables x and y to obtain

$$
x=2 y+3
$$

This equation defines the inverse f^{-1} implicitly.

Step 2: If possible, solve the implicit equation for y in terms of x to obtain the explicit form of f^{-1}, $y=f^{-1}(x)$.

To find the explicit form of the inverse, solve $x=2 y+3$ for y.

$$
\begin{aligned}
x & =2 y+3 & & \\
2 y+3 & =x & & \text { Reflexive Property; If } a=b, \text { then } b=a . \\
2 y & =x-3 & & \text { Subtract } 3 \text { from both sides. } \\
y & =\frac{1}{2}(x-3) & & \text { Divide both sides by } 2 .
\end{aligned}
$$

The explicit form of the inverse f^{-1} is

$$
f^{-1}(x)=\frac{1}{2}(x-3)
$$

Step 3: Check the result by showing that $f^{-1}(f(x))=x$ and $f\left(f^{-1}(x)\right)=x$.

Figure 16

We verified that f and f^{-1} are inverses in Example 5(b).

The graphs of $f(x)=2 x+3$ and its inverse $f^{-1}(x)=\frac{1}{2}(x-3)$ are shown in Figure 16 . Note the symmetry of the graphs with respect to the line $y=x$.

Procedure for Finding the Inverse of a One-to-One Function

STEP 1: In $y=f(x)$, interchange the variables x and y to obtain

$$
x=f(y)
$$

This equation defines the inverse function f^{-1} implicitly.
STEP 2: If possible, solve the implicit equation for y in terms of x to obtain the explicit form of f^{-1} :

$$
y=f^{-1}(x)
$$

Step 3: Check the result by showing that

$$
f^{-1}(f(x))=x \quad \text { and } \quad f\left(f^{-1}(x)\right)=x
$$

Finding the Inverse Function

The function

$$
f(x)=\frac{2 x+1}{x-1} \quad x \neq 1
$$

is one-to-one. Find its inverse and check the result.
STEP 1: Replace $f(x)$ with y and interchange the variables x and y in

$$
y=\frac{2 x+1}{x-1}
$$

to obtain

$$
x=\frac{2 y+1}{y-1}
$$

STEP 2: Solve for y.

$$
\begin{aligned}
x & =\frac{2 y+1}{y-1} \\
x(y-1) & =2 y+1 \quad \text { Multiply both sides by } y-1 . \\
x y-x & =2 y+1 \quad \text { Apply the Distributive Property. } \\
x y-2 y & =x+1 \quad \text { Subtract } 2 y \text { from both sides; add } \times \text { to both sides. } \\
(x-2) y & =x+1 \quad \text { Factor: } \\
y & =\frac{x+1}{x-2} \quad \text { Divide by } x-2 .
\end{aligned}
$$

The inverse is

$$
f^{-1}(x)=\frac{x+1}{x-2} \quad x \neq 2 \quad \text { Replace } y \text { by } f^{\prime}(x) .
$$

STEP 3: Check:

$$
\begin{aligned}
& f^{-1}(f(x))=f^{-1}\left(\frac{2 x+1}{x-1}\right)=\frac{\frac{2 x+1}{x-1}+1}{\frac{2 x+1}{x-1}-2}=\frac{2 x+1+x-1}{2 x+1-2(x-1)}=\frac{3 x}{3}=x \quad x \neq 1 \\
& f\left(f^{-1}(x)\right)=f\left(\frac{x+1}{x-2}\right)=\frac{2\left(\frac{x+1}{x-2}\right)+1}{\frac{x+1}{x-2}-1}=\frac{2(x+1)+x-2}{x+1-(x-2)}=\frac{3 x}{3}=x \quad x \neq 2
\end{aligned}
$$

