CHAPTER 5 SULLIVAN $9^{\text {th }}$ Ed

5.1 Composite functions

Composition of Functions

Let f and g be two functions. The composition of f and g, denoted $f \circ g$, is the function defined by $(f \circ g)(x)=f(g(x))$. The domain of $f \circ g$ consists of all x in the domain of g for which $g(x)$ is in turn in the domain of f. The function $f \circ g$ is read " f composed with g ", or " f of g."

Another way of combining functions beside multiplication, division, addition and subtraction is in the form of COMPOSITION.
COMPOSITION of one function with another means apply one function $f(\mathbf{x})$ to the output of another function $\mathbf{g}(\mathbf{x})$. In COMPOSITION functions $f(x)$ and $g(x)$ are not commutative $[a+b=b+a$ or $a b=b a]$.

The diagram in Figure 1 is a sort of schematic of the composition of two functions. The ovals represent sets, with the leftmost oval being the domain of the function g. The arrows indicate the element that x is associated with by the various functions.

Figure 1: Composition of f and g
As with the four arithmetic ways of combining functions, we can evaluate the composition of two functions at a single point, or find a formula for the composition if we have been given formulas for the individual functions.

Given $f(x)=2 x^{2}-5$ and $g(x)=\llbracket x+2 \rrbracket$, find:
a. $(f \circ g)(4)$
fof g
a. $(f \circ g)(4)$
$x=4$ then $g(x)=x+2 \rightarrow 4+2 / / f(g(x))$ then $f(4+2) \rightarrow f(6) / / f(6)=2 x^{\wedge} 2-5 \rightarrow f(6)=2(6)^{\wedge} 2-5 \rightarrow 67$
a. $\quad g(4)=\llbracket 4+2 \rrbracket=6$ and so $(f \circ g)(4)=f(g(4))=f(6)=67$.

a. $\quad f(x)=x^{2}$ and $g(x)=5 x-8$

$$
f(g(x))=
$$

$$
\text { thus } f(g(x))=f(5 x-8) \text { hence we takes this value }(5 x-8)^{\wedge} 2 \text { or }(5 x-8)(5 x-8)=\mathbf{2 5 x} x^{\wedge} \mathbf{2 - 8 0 x}+\mathbf{6 4}
$$

Let $f(x)=|x-2|$ and $g(x)=\frac{x+1}{3}$. Find formulas and state the domains for:
a. $f \circ g$

Solution:
a. $\quad(f \circ g)(x)=f\left(\frac{x+1}{3}\right)$

$\square=|$| $\left.=\left\lvert\, \frac{x+1}{3}\right.\right)-\mathbf{2}$ |
| :--- |
| $=\left\|\frac{x-5}{3}\right\|$ |

$g(x)=[(x+1) /(3)] \rightarrow f(g(x))=f([(x+1) /(3)])$
f * g is where the value for $g(x)$ becomes the value of " x " in $f(x)$.
$f([(x+1) /(3)])=|x-2| \rightarrow \mid[(x+1) /(3)])-2 \mid \rightarrow$
$\mid[(x+1) /(3)])-2|\rightarrow|[(x+1) /(3)])-(2 / 1)(3 / 3) \mid$
$\mid[(x+1) /(3)])-(6 / 3) \mid$
$|[(x-5) /(3)]|$
Always keep the absolute value sign.
b. $g \circ f$

$$
f(x)=|x-2| \quad g(x)=\frac{x+1}{3}
$$

b.

$$
\begin{aligned}
(g \circ f)(x) & =g(|x-2|) \\
& =\frac{|x-2|+1}{3}
\end{aligned}
$$

$f(x)=|x-2| \rightarrow g(f(x))=g(|x-2|)$
g *f is where the value for $f(x)$ becomes the value of " x " in $g(x)$.
$g(|x-2|)=[(x+1) /(3)] \rightarrow[([|x-2|]+1) /(3)]$

Given two functions f and g, the composite function, denoted by $f \circ g$ (read as " f composed with g "), is defined by

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$ is the set of all numbers x in the domain of g such that $g(x)$ is in the domain of f.

Evaluating a Composite Function

Suppose that $f(x)=2 x^{2}-3$ and $g(x)=4 x$. Find:
(a) $(f \circ g)(1)$
(b) $(g \circ f)(1)$
(c) $(f \circ f)(-2)$
(d) $(g \circ g)(-1)$
(a) $(f \circ g)(1)=f(g(1)\}=f(4)=2 \cdot 4^{2}-3=29$

$$
\begin{aligned}
& g(x)=4 x \quad f(x)=2 x^{2}-3 \\
& g(1)=4
\end{aligned}
$$

(b) $(g \circ f)(1)=g(f(1))=g(-1)=4 \cdot(-1)=-4$

$$
\begin{aligned}
& \uparrow \quad \begin{array}{c}
\uparrow \\
f(x)
\end{array}=2 x^{2}-3 \quad g(x)=4 x \\
& f(1)=-1
\end{aligned}
$$

(c) $(f \circ f)(-2)=f(f(-2))=f(5)=2 \cdot 5^{2}-3=47$

$$
\begin{gathered}
\uparrow \\
f(-2)=2(-2)^{2}-3=5
\end{gathered}
$$

(d) $(g \circ g)(-1)=g(g(-1))=g(-4)=4 \cdot(-4)=-16$

$$
\stackrel{\uparrow}{q(-1)} \stackrel{\uparrow}{=}-4
$$

Finding a Composite Function and Its Domain

Suppose that $f(x)=x^{2}+3 x-1$ and $g(x)=2 x+3$.
Find: (a) $f \circ g \quad$ (b) $g \circ f$
Then find the domain of each composite function.
The domain of f and the domain of g are the set of all real numbers.
(a) $(f \circ g)(x)=f(g(x))=f(2 x+3)=(2 x+3)^{2}+3(2 x+3)-1$

$$
\stackrel{\uparrow}{f(x)} \stackrel{\uparrow}{=} x^{2}+3 x-1
$$

$$
=4 x^{2}+12 x+9+6 x+9-1=4 x^{2}+18 x+17
$$

Since the domains of both f and g are the set of all real numbers, the domain of $f \circ g$ is the set of all real numbers.

[^0]
MMPLE 4 Finding a Composite Function and Its Domain

Suppose that $f(x)=\frac{1}{x+2}$ and $g(x)=\frac{4}{x-1}$.
Find: (a) $f \circ g \quad$ (b) $f \circ f$
Then find the domain of each composite function.
Solution The domain of f is $\{x \mid x \neq-2\}$ and the domain of g is $\{x \mid x \neq 1\}$.
(a) $(f \circ g)(x)=f(g(x))=f\left(\frac{4}{x-1}\right)=\frac{1}{\frac{4}{x-1}+2}=\frac{x-1}{4+2(x-1)}=\frac{x-1}{2 x+2}=\frac{x-1}{2(x+1)}$

$$
f(x)=\frac{1}{x+2} \quad \text { Multiply by } \frac{x-1}{x-1}
$$

the domain of $f \circ g$ to be $\{x \mid x \neq-1, x \neq 1\}$.
(b) $(f \circ f)(x)=f(f(x))=f\left(\frac{1}{x+2}\right)=\frac{1}{\frac{1}{x+2}+2}=\frac{x+2}{1+2(x+2)}=\frac{x+2}{2 x+5}$

$$
f(x)=\frac{1}{x+2} \quad \text { Multiply by } \frac{x+2}{x+2} .
$$

The domain of $f \circ f$ consists of those x in the domain of $f,\{x \mid x \neq-2\}$, for which

$$
\begin{aligned}
f(x)=\frac{1}{x+2} \neq-2 \quad \frac{1}{x+2} & =-2 \\
1 & =-2(x+2) \\
1 & =-2 x-4 \\
2 x & =-5 \\
x & =-\frac{5}{2}
\end{aligned}
$$

or, equivalently,

$$
x \neq-\frac{5}{2}
$$

The domain of $f \circ f$ is $\left\{x \left\lvert\, x \neq-\frac{5}{2}\right., x \neq-2\right\}$.
We could also find the domain of $f \circ f$ by recognizing that -2 is not in the domain of f and so should be excluded from the domain of $f \circ f$. Then, looking at $f \circ f$, we see that x cannot equal $-\frac{5}{2}$. Do you see why? Therefore, the domain of $f \circ f$ is $\left\{x \left\lvert\, x \neq-\frac{5}{2}\right., x \neq-2\right\}$.

[^0]: * Consult your owner's manual for the appropriate keystrokes.

